Optimal and Robust Invariant Designs for Cubic Multiple Regression.
Metrika, Tome 42 (1995) no. 3-4, pp. 29-48.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : multiple polynomial regression of third order, ball, symmetric cube, optimal approximate design, convex and differentiable optimality criterion, permutations, sign changes of coordinates, matrix group, robustness
@article{MET_1995__42_3-4_176551,
     author = {Norbert Gaffke and Berthold Heiligers},
     title = {Optimal and {Robust} {Invariant} {Designs} for {Cubic} {Multiple} {Regression.}},
     journal = {Metrika},
     pages = {29--48},
     publisher = {mathdoc},
     volume = {42},
     number = {3-4},
     year = {1995},
     zbl = {0817.62059},
     url = {http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176551/}
}
TY  - JOUR
AU  - Norbert Gaffke
AU  - Berthold Heiligers
TI  - Optimal and Robust Invariant Designs for Cubic Multiple Regression.
JO  - Metrika
PY  - 1995
SP  - 29
EP  - 48
VL  - 42
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176551/
ID  - MET_1995__42_3-4_176551
ER  - 
%0 Journal Article
%A Norbert Gaffke
%A Berthold Heiligers
%T Optimal and Robust Invariant Designs for Cubic Multiple Regression.
%J Metrika
%D 1995
%P 29-48
%V 42
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176551/
%F MET_1995__42_3-4_176551
Norbert Gaffke; Berthold Heiligers. Optimal and Robust Invariant Designs for Cubic Multiple Regression.. Metrika, Tome 42 (1995) no. 3-4, pp. 29-48. http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176551/