Exact and Approximate D-Optimal Designs in Polynomial Regression.
Metrika, Tome 42 (1995) no. 3-4, pp. 19-28.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Legendre polynomials, Lagrange interpolation polynomials, Hermite interpolation, approximate D-optimal design, D-optimal, exact polynomial regression designs, efficient algorithm, minimum sample size, polynomial model
@article{MET_1995__42_3-4_176550,
     author = {Maximilian Happacher},
     title = {Exact and {Approximate} {D-Optimal} {Designs} in {Polynomial} {Regression.}},
     journal = {Metrika},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {42},
     number = {3-4},
     year = {1995},
     zbl = {0818.62064},
     url = {http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176550/}
}
TY  - JOUR
AU  - Maximilian Happacher
TI  - Exact and Approximate D-Optimal Designs in Polynomial Regression.
JO  - Metrika
PY  - 1995
SP  - 19
EP  - 28
VL  - 42
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176550/
ID  - MET_1995__42_3-4_176550
ER  - 
%0 Journal Article
%A Maximilian Happacher
%T Exact and Approximate D-Optimal Designs in Polynomial Regression.
%J Metrika
%D 1995
%P 19-28
%V 42
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176550/
%F MET_1995__42_3-4_176550
Maximilian Happacher. Exact and Approximate D-Optimal Designs in Polynomial Regression.. Metrika, Tome 42 (1995) no. 3-4, pp. 19-28. http://geodesic.mathdoc.fr/item/MET_1995__42_3-4_176550/