Further Developments in Estimation of the Largest Mean of K Normal Populations.
Metrika, Tome 40 (1993) no. 2, pp. 173-183
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
two-stage procedure, modified two-stage procedure, exact bounded maximal risk, fixed-width confidence interval, second-order properties, bounded maximal risk point estimation, fixed-width confidence interval estimation, largest mean, independent normal populations, unknown means, unknown but equal variance, maximal risk, accelerated sequential methodologies
@article{MET_1993__40_2_176458,
author = {N. Mukhopadhyay and S. Chattopadhyay and S.K. Sahn},
title = {Further {Developments} in {Estimation} of the {Largest} {Mean} of {K} {Normal} {Populations.}},
journal = {Metrika},
pages = {173--183},
year = {1993},
volume = {40},
number = {2},
zbl = {0770.62068},
url = {http://geodesic.mathdoc.fr/item/MET_1993__40_2_176458/}
}
TY - JOUR AU - N. Mukhopadhyay AU - S. Chattopadhyay AU - S.K. Sahn TI - Further Developments in Estimation of the Largest Mean of K Normal Populations. JO - Metrika PY - 1993 SP - 173 EP - 183 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/MET_1993__40_2_176458/ ID - MET_1993__40_2_176458 ER -
N. Mukhopadhyay; S. Chattopadhyay; S.K. Sahn. Further Developments in Estimation of the Largest Mean of K Normal Populations.. Metrika, Tome 40 (1993) no. 2, pp. 173-183. http://geodesic.mathdoc.fr/item/MET_1993__40_2_176458/