Further Developments in Estimation of the Largest Mean of K Normal Populations.
Metrika, Tome 40 (1993) no. 2, pp. 173-183.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : two-stage procedure, modified two-stage procedure, exact bounded maximal risk, fixed-width confidence interval, second-order properties, bounded maximal risk point estimation, fixed-width confidence interval estimation, largest mean, independent normal populations, unknown means, unknown but equal variance, maximal risk, accelerated sequential methodologies
@article{MET_1993__40_2_176458,
     author = {N. Mukhopadhyay and S. Chattopadhyay and S.K. Sahn},
     title = {Further {Developments} in {Estimation} of the {Largest} {Mean} of {K}  {Normal} {Populations.}},
     journal = {Metrika},
     pages = {173--183},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1993},
     zbl = {0770.62068},
     url = {http://geodesic.mathdoc.fr/item/MET_1993__40_2_176458/}
}
TY  - JOUR
AU  - N. Mukhopadhyay
AU  - S. Chattopadhyay
AU  - S.K. Sahn
TI  - Further Developments in Estimation of the Largest Mean of K  Normal Populations.
JO  - Metrika
PY  - 1993
SP  - 173
EP  - 183
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MET_1993__40_2_176458/
ID  - MET_1993__40_2_176458
ER  - 
%0 Journal Article
%A N. Mukhopadhyay
%A S. Chattopadhyay
%A S.K. Sahn
%T Further Developments in Estimation of the Largest Mean of K  Normal Populations.
%J Metrika
%D 1993
%P 173-183
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MET_1993__40_2_176458/
%F MET_1993__40_2_176458
N. Mukhopadhyay; S. Chattopadhyay; S.K. Sahn. Further Developments in Estimation of the Largest Mean of K  Normal Populations.. Metrika, Tome 40 (1993) no. 2, pp. 173-183. http://geodesic.mathdoc.fr/item/MET_1993__40_2_176458/