Testing One-Sided Hypotheses for the Mean of a Gaussian Process.
Metrika, Tome 38 (1991) no. 2, pp. 179-194.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : local alternatives, testing one-sided hypotheses, continuous zero-mean Gaussian process, known covariance function, locally most powerful test, asymptotically uniformly most powerful, sinusoidal signal transmission, linear stochastic differential systems
@article{MET_1991__38_2_176345,
     author = {H. Luschgy},
     title = {Testing {One-Sided} {Hypotheses} for the {Mean} of a {Gaussian} {Process.}},
     journal = {Metrika},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1991},
     zbl = {0752.62060},
     url = {http://geodesic.mathdoc.fr/item/MET_1991__38_2_176345/}
}
TY  - JOUR
AU  - H. Luschgy
TI  - Testing One-Sided Hypotheses for the Mean of a Gaussian Process.
JO  - Metrika
PY  - 1991
SP  - 179
EP  - 194
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MET_1991__38_2_176345/
ID  - MET_1991__38_2_176345
ER  - 
%0 Journal Article
%A H. Luschgy
%T Testing One-Sided Hypotheses for the Mean of a Gaussian Process.
%J Metrika
%D 1991
%P 179-194
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MET_1991__38_2_176345/
%F MET_1991__38_2_176345
H. Luschgy. Testing One-Sided Hypotheses for the Mean of a Gaussian Process.. Metrika, Tome 38 (1991) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/MET_1991__38_2_176345/