Testing One-Sided Hypotheses for the Mean of a Gaussian Process.
Metrika, Tome 38 (1991) no. 2, pp. 179-194
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
local alternatives, testing one-sided hypotheses, continuous zero-mean Gaussian process, known covariance function, locally most powerful test, asymptotically uniformly most powerful, sinusoidal signal transmission, linear stochastic differential systems
@article{MET_1991__38_2_176345,
author = {H. Luschgy},
title = {Testing {One-Sided} {Hypotheses} for the {Mean} of a {Gaussian} {Process.}},
journal = {Metrika},
pages = {179--194},
year = {1991},
volume = {38},
number = {2},
zbl = {0752.62060},
url = {http://geodesic.mathdoc.fr/item/MET_1991__38_2_176345/}
}
H. Luschgy. Testing One-Sided Hypotheses for the Mean of a Gaussian Process.. Metrika, Tome 38 (1991) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/MET_1991__38_2_176345/