The evolving notion of multiplicity as an invariant in singularity theory
Mathematics and Education in Mathematics, Tome 51 (2022), pp. 89-99.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We survey results on the multiplicity of a complex analytic variety at a point and its generalizations as numerical invariants in singularity theory. В тази работа правим обзор на резултати, свързани с индекса на кратност в точка на комплексно аналитично многообразие, негови обобщения и приложението им като числени инварианти в теория на особеностите.
Keywords: Multiplicity, equisingularity, Hilbert–Samuel multiplicity, Buchsbaum–Rim multiplicity, local volume, Excess–Degree Formula, Local Volume Formula, 32S15, 32S30, 32S60, 14C17, 14B15, 13A30, 13H15, 32S15, 32S30, 32S60, 14C17, 14B15, 13A30, 13H15
@article{MEM_2022_51_a6,
     author = {Rangachev, Antoni},
     title = {The evolving notion of multiplicity as an invariant in singularity theory},
     journal = {Mathematics and Education in Mathematics},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {51},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2022_51_a6/}
}
TY  - JOUR
AU  - Rangachev, Antoni
TI  - The evolving notion of multiplicity as an invariant in singularity theory
JO  - Mathematics and Education in Mathematics
PY  - 2022
SP  - 89
EP  - 99
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2022_51_a6/
LA  - en
ID  - MEM_2022_51_a6
ER  - 
%0 Journal Article
%A Rangachev, Antoni
%T The evolving notion of multiplicity as an invariant in singularity theory
%J Mathematics and Education in Mathematics
%D 2022
%P 89-99
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2022_51_a6/
%G en
%F MEM_2022_51_a6
Rangachev, Antoni. The evolving notion of multiplicity as an invariant in singularity theory. Mathematics and Education in Mathematics, Tome 51 (2022), pp. 89-99. http://geodesic.mathdoc.fr/item/MEM_2022_51_a6/