The evolving notion of multiplicity as an invariant in singularity theory
Mathematics and Education in Mathematics, Tome 51 (2022), pp. 89-99
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We survey results on the multiplicity of a complex analytic variety at a point and its generalizations as numerical invariants in singularity theory.
В тази работа правим обзор на резултати, свързани с индекса на кратност в точка на комплексно аналитично многообразие, негови обобщения и приложението им като числени инварианти в теория на особеностите.
Keywords:
Multiplicity, equisingularity, Hilbert–Samuel multiplicity, Buchsbaum–Rim multiplicity, local volume, Excess–Degree Formula, Local Volume Formula, 32S15, 32S30, 32S60, 14C17, 14B15, 13A30, 13H15, 32S15, 32S30, 32S60, 14C17, 14B15, 13A30, 13H15
@incollection{MEM_2022_51_a6,
author = {Rangachev, Antoni},
title = {The evolving notion of multiplicity as an invariant in singularity theory},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {89--99},
year = {2022},
volume = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2022_51_a6/}
}
Rangachev, Antoni. The evolving notion of multiplicity as an invariant in singularity theory. Mathematics and Education in Mathematics, Tome 51 (2022), pp. 89-99. http://geodesic.mathdoc.fr/item/MEM_2022_51_a6/