A generalization of descent polynomials
Mathematics and Education in Mathematics, Tome 51 (2022), pp. 145-150.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The notion of a descent polynomial, a function in enumerative combinatorics that counts permutations with specific properties, enjoys a revived recent research interest due to its connection with other important notions in combinatorics, viz. peak polynomials and symmetric functions. We define the function d m(I, n) as a generalization of the descent polynomial and obtain an explicit formula for d m(I, n) when m is sufficiently large. В комбинаториката спускащият се полином e функция, с която се изброяват пермутации със специфични свойства. В последните години интересът към него е подновен поради връзката му с други важни понятия в комбинаториката като върхови полиноми и симетрични функции. Дефинираме функцията d m(I, n) като обобщение на спускащия се полином и извеждаме явна формула за d m(I, n), когато m е достатъчно голямо.
Keywords: descent polynomial, permutation, generalization, multiplicity, repetitions, 05A05, спускащ се полином, пермутация, обобщение, многочисленост, повторения
@article{MEM_2022_51_a11,
     author = {Raychev, Angel},
     title = {A generalization of descent polynomials},
     journal = {Mathematics and Education in Mathematics},
     pages = {145--150},
     publisher = {mathdoc},
     volume = {51},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2022_51_a11/}
}
TY  - JOUR
AU  - Raychev, Angel
TI  - A generalization of descent polynomials
JO  - Mathematics and Education in Mathematics
PY  - 2022
SP  - 145
EP  - 150
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2022_51_a11/
LA  - en
ID  - MEM_2022_51_a11
ER  - 
%0 Journal Article
%A Raychev, Angel
%T A generalization of descent polynomials
%J Mathematics and Education in Mathematics
%D 2022
%P 145-150
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2022_51_a11/
%G en
%F MEM_2022_51_a11
Raychev, Angel. A generalization of descent polynomials. Mathematics and Education in Mathematics, Tome 51 (2022), pp. 145-150. http://geodesic.mathdoc.fr/item/MEM_2022_51_a11/