Hamilton's instability index and applications to periodic waves
Mathematics and Education in Mathematics, Tome 50 (2021), pp. 102-110.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this survey we present some results on the stability of periodic waves. The main objective is to study their stability with respect to co-periodic perturbations. In our considerations, we rely on an instability index count theories, which in turn critically depend on a detailed spectral analysis of a self-adjoint both scalar and matrix Hill operators, and in the computations of the quantities involved on the stability index.
Keywords: periodic traveling waves, linear stability, nonlinear wave equation, 35B35, 35B40, 35G30
@article{MEM_2021_50_a9,
     author = {Hakkaev, Sevdzhan},
     title = {Hamilton's instability index and applications to periodic waves},
     journal = {Mathematics and Education in Mathematics},
     pages = {102--110},
     publisher = {mathdoc},
     volume = {50},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2021_50_a9/}
}
TY  - JOUR
AU  - Hakkaev, Sevdzhan
TI  - Hamilton's instability index and applications to periodic waves
JO  - Mathematics and Education in Mathematics
PY  - 2021
SP  - 102
EP  - 110
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2021_50_a9/
LA  - en
ID  - MEM_2021_50_a9
ER  - 
%0 Journal Article
%A Hakkaev, Sevdzhan
%T Hamilton's instability index and applications to periodic waves
%J Mathematics and Education in Mathematics
%D 2021
%P 102-110
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2021_50_a9/
%G en
%F MEM_2021_50_a9
Hakkaev, Sevdzhan. Hamilton's instability index and applications to periodic waves. Mathematics and Education in Mathematics, Tome 50 (2021), pp. 102-110. http://geodesic.mathdoc.fr/item/MEM_2021_50_a9/