On symmetric positive solutions of p-Laplacian differential equation with variable coefficients
Mathematics and Education in Mathematics, Tome 50 (2021), pp. 156-162
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we study the existence of symmetric positive solutions for p-Laplacian differential equation. Using the mountain-pass theorem and a lemma on symmetry we prove the existence of positive even solutions of the problem considered.
В статията се изследва съществуването на положителни четни решения на задача на Дирихле за едномерни p-Лапласови уравнения. Приложени са теоремата за хребета и лема за симетрия.
Keywords:
symmetric solution, weak solution, Palais-Smale condition, mountain-pass theorem, p-Laplacian ODEs, 34B15, 34B60, 49J35, 49J50, p-Laplacian ODEs, symmetric solution, weak solution, Palais-Smale condition, mountain-pass theorem, 34B15, 34B60, 49J35, 49J50
@incollection{MEM_2021_50_a16,
author = {Tcvetkova, Gergana},
title = {On symmetric positive solutions of {p-Laplacian} differential equation with variable coefficients},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {156--162},
year = {2021},
volume = {50},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2021_50_a16/}
}
TY - JOUR AU - Tcvetkova, Gergana TI - On symmetric positive solutions of p-Laplacian differential equation with variable coefficients JO - Mathematics and Education in Mathematics PY - 2021 SP - 156 EP - 162 VL - 50 UR - http://geodesic.mathdoc.fr/item/MEM_2021_50_a16/ LA - en ID - MEM_2021_50_a16 ER -
Tcvetkova, Gergana. On symmetric positive solutions of p-Laplacian differential equation with variable coefficients. Mathematics and Education in Mathematics, Tome 50 (2021), pp. 156-162. http://geodesic.mathdoc.fr/item/MEM_2021_50_a16/