Stability analysis of a model for a vector-borne disease with an asymptomatic class
Mathematics and Education in Mathematics, Tome 50 (2021), pp. 144-149
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We introduce a model for a vector-borne disease with symptomatic and asymptomatic carrier classes described by a system of ordinary differential equations. We analyse the local and the global stability of the disease-free and the endemic equilibria using appropriately chosen Lyapunov functions.
Представен е модел на векторно-предавана болест със симптомни и безсимптомни класове, описан със система обикновени диференциални уравнения. Анализират се локалната и глобалната устойчивост на равновесията на елиминирана и на ендемична болест с помощта на подходящо избрани функции на Ляпунов.
Keywords:
vector-borne disease, dynamical systems, asymptotic analysis, Lyapunov stability, 92D30, 34D05, 34D23, векторно предавана болест, динамични системи, асимптотичен анализ, устойчивост по Ляпунов, 92D30, 34D05, 34D23
@incollection{MEM_2021_50_a14,
author = {Rashkov, Peter},
title = {Stability analysis of a model for a vector-borne disease with an asymptomatic class},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {144--149},
year = {2021},
volume = {50},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2021_50_a14/}
}
Rashkov, Peter. Stability analysis of a model for a vector-borne disease with an asymptomatic class. Mathematics and Education in Mathematics, Tome 50 (2021), pp. 144-149. http://geodesic.mathdoc.fr/item/MEM_2021_50_a14/