Locus of the centroids of the equilateral triangles inscribed in a parabola
Mathematics and Education in Mathematics, Tome 49 (2020), pp. 234-238.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The locus of the centroids of the equilateral triangle inscribed in a parabola is also a parabola. The proof features some capabilities of the computer algebra system Maxima and the dynamic geometry software GeoGebra. Геометрично място от медицентровете на равностранните триъгълници, вписани в дадена парабола, е отново парабола.
Mots-clés : геометрично място от медицентровете на равностранните триъгълници, вписани в парабола, 97G40, locus of the centroids of equilateral triangle inscribed in a parabola, 97G40
@article{MEM_2020_49_a26,
     author = {Stanev, Martin},
     title = {Locus of the centroids of the equilateral triangles inscribed in a parabola},
     journal = {Mathematics and Education in Mathematics},
     pages = {234--238},
     publisher = {mathdoc},
     volume = {49},
     year = {2020},
     language = {bg},
     url = {http://geodesic.mathdoc.fr/item/MEM_2020_49_a26/}
}
TY  - JOUR
AU  - Stanev, Martin
TI  - Locus of the centroids of the equilateral triangles inscribed in a parabola
JO  - Mathematics and Education in Mathematics
PY  - 2020
SP  - 234
EP  - 238
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2020_49_a26/
LA  - bg
ID  - MEM_2020_49_a26
ER  - 
%0 Journal Article
%A Stanev, Martin
%T Locus of the centroids of the equilateral triangles inscribed in a parabola
%J Mathematics and Education in Mathematics
%D 2020
%P 234-238
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2020_49_a26/
%G bg
%F MEM_2020_49_a26
Stanev, Martin. Locus of the centroids of the equilateral triangles inscribed in a parabola. Mathematics and Education in Mathematics, Tome 49 (2020), pp. 234-238. http://geodesic.mathdoc.fr/item/MEM_2020_49_a26/