Using entropy of categorical data for clustering
Mathematics and Education in Mathematics, Tome 49 (2020), pp. 133-136.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

One of the most important tasks of cluster analysis is determining the number of clusters. In this article we suggest a method for it, using entropy of categorical data. Examples, illustrating the method, are given. Една от най-важните задачи при клъстърния анализ е определяне на броя на клъстърите. В тази статия предлагаме метод, който използва ентропия на категорийни данни. Прилагат се примери, илюстриращи този метод.
Keywords: clustering, entropy, number of clusters, 62H30, 68T10, клъстърен анализ, ентропия, брой на клъстърите, 62H30, 68T10
@article{MEM_2020_49_a12,
     author = {Dangalchev, Chavdar},
     title = {Using entropy of categorical data for clustering},
     journal = {Mathematics and Education in Mathematics},
     pages = {133--136},
     publisher = {mathdoc},
     volume = {49},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2020_49_a12/}
}
TY  - JOUR
AU  - Dangalchev, Chavdar
TI  - Using entropy of categorical data for clustering
JO  - Mathematics and Education in Mathematics
PY  - 2020
SP  - 133
EP  - 136
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2020_49_a12/
LA  - en
ID  - MEM_2020_49_a12
ER  - 
%0 Journal Article
%A Dangalchev, Chavdar
%T Using entropy of categorical data for clustering
%J Mathematics and Education in Mathematics
%D 2020
%P 133-136
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2020_49_a12/
%G en
%F MEM_2020_49_a12
Dangalchev, Chavdar. Using entropy of categorical data for clustering. Mathematics and Education in Mathematics, Tome 49 (2020), pp. 133-136. http://geodesic.mathdoc.fr/item/MEM_2020_49_a12/