About Homogeneous Spaces and the Baire Property in Remainders
Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 134-138
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we continue the study of the notions of o-homogeneous space, lo-homogeneous space, do-homogeneous space and co-homogeneous space. Theorem 5.1 affirms that a co-homogeneous space X is a Moscow space provided it contains a Gδ - dense Moscow subspace Y. ∗2000 Mathematics Subject Classification: 54A35, 63E35, 54D50.
Keywords:
Homogeneous Space, Dissentive Space, Extension, Baire Property, Moscow Space
@incollection{MEM_2012_41_1_a8,
author = {Arhangel{\textquoteright}skii, Alexander and Choban, Mitrofan and Mihaylova, Ekaterina},
title = {About {Homogeneous} {Spaces} and the {Baire} {Property} in {Remainders}},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {134--138},
year = {2012},
volume = {41},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a8/}
}
TY - JOUR AU - Arhangel’skii, Alexander AU - Choban, Mitrofan AU - Mihaylova, Ekaterina TI - About Homogeneous Spaces and the Baire Property in Remainders JO - Mathematics and Education in Mathematics PY - 2012 SP - 134 EP - 138 VL - 41 IS - 1 UR - http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a8/ LA - en ID - MEM_2012_41_1_a8 ER -
%0 Journal Article %A Arhangel’skii, Alexander %A Choban, Mitrofan %A Mihaylova, Ekaterina %T About Homogeneous Spaces and the Baire Property in Remainders %J Mathematics and Education in Mathematics %D 2012 %P 134-138 %V 41 %N 1 %U http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a8/ %G en %F MEM_2012_41_1_a8
Arhangel’skii, Alexander; Choban, Mitrofan; Mihaylova, Ekaterina. About Homogeneous Spaces and the Baire Property in Remainders. Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 134-138. http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a8/