Discrete Generalization of Gronwall-Bellman Inequality with Maxima and Application
Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 180-184
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Several new types of linear discrete inequalities containing the maximum of the unknown function over a past time interval are solved. Some of these inequalities are applied to difference equations with maximum and the continuous dependence of a perturbation is studied. *2000 Mathematics Subject Classification: 39A22, 26D15, 39B62, 39A10, 47J20.
Keywords:
Discrete Gronwall–Bellman Type Inequality, Difference Equations with Maxima, Bounds
@incollection{MEM_2012_41_1_a16,
author = {Hristova, Snezhana and Stefanova, Kremena and Vankova, Liliana},
title = {Discrete {Generalization} of {Gronwall-Bellman} {Inequality} with {Maxima} and {Application}},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {180--184},
year = {2012},
volume = {41},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a16/}
}
TY - JOUR AU - Hristova, Snezhana AU - Stefanova, Kremena AU - Vankova, Liliana TI - Discrete Generalization of Gronwall-Bellman Inequality with Maxima and Application JO - Mathematics and Education in Mathematics PY - 2012 SP - 180 EP - 184 VL - 41 IS - 1 UR - http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a16/ LA - en ID - MEM_2012_41_1_a16 ER -
%0 Journal Article %A Hristova, Snezhana %A Stefanova, Kremena %A Vankova, Liliana %T Discrete Generalization of Gronwall-Bellman Inequality with Maxima and Application %J Mathematics and Education in Mathematics %D 2012 %P 180-184 %V 41 %N 1 %U http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a16/ %G en %F MEM_2012_41_1_a16
Hristova, Snezhana; Stefanova, Kremena; Vankova, Liliana. Discrete Generalization of Gronwall-Bellman Inequality with Maxima and Application. Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 180-184. http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a16/