An Inequality for Generalized Chromatic Graphs
Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 143-147
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let G be a simple n-vertex graph with degree sequence d1, d2, . . . , dn and vertex set
V(G). The degree of v ∈ V(G) is denoted by d(v). The smallest integer r for which
V(G) has an r-partition
V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6 = j
such that d(v) ≤ n − |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r is denoted by ϕ(G). In this note we
prove the inequality ... *2000 Mathematics Subject Classification: Primary 05C35.
Keywords:
Clique Number, Degree Sequence
@incollection{MEM_2012_41_1_a10,
author = {Bojilov, Asen and Nenov, Nedyalko},
title = {An {Inequality} for {Generalized} {Chromatic} {Graphs}},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {143--147},
year = {2012},
volume = {41},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a10/}
}
Bojilov, Asen; Nenov, Nedyalko. An Inequality for Generalized Chromatic Graphs. Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 143-147. http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a10/