An Inequality for Generalized Chromatic Graphs
Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 143-147.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let G be a simple n-vertex graph with degree sequence d1, d2, . . . , dn and vertex set V(G). The degree of v ∈ V(G) is denoted by d(v). The smallest integer r for which V(G) has an r-partition V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6 = j such that d(v) ≤ n − |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r is denoted by ϕ(G). In this note we prove the inequality ... *2000 Mathematics Subject Classification: Primary 05C35.
Keywords: Clique Number, Degree Sequence
@article{MEM_2012_41_1_a10,
     author = {Bojilov, Asen and Nenov, Nedyalko},
     title = {An {Inequality} for {Generalized} {Chromatic} {Graphs}},
     journal = {Mathematics and Education in Mathematics},
     pages = {143--147},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a10/}
}
TY  - JOUR
AU  - Bojilov, Asen
AU  - Nenov, Nedyalko
TI  - An Inequality for Generalized Chromatic Graphs
JO  - Mathematics and Education in Mathematics
PY  - 2012
SP  - 143
EP  - 147
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a10/
LA  - en
ID  - MEM_2012_41_1_a10
ER  - 
%0 Journal Article
%A Bojilov, Asen
%A Nenov, Nedyalko
%T An Inequality for Generalized Chromatic Graphs
%J Mathematics and Education in Mathematics
%D 2012
%P 143-147
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a10/
%G en
%F MEM_2012_41_1_a10
Bojilov, Asen; Nenov, Nedyalko. An Inequality for Generalized Chromatic Graphs. Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 143-147. http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a10/