Pseudo-Compact Semi-Topological Groups
Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 53-60.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A semitopological group (topological group) is a group endowed with a topology for which multiplication is separately continuous (multiplication is jointly continuous and inversion is continuous). In this paper we give some topological conditions on a semitopological group that imply that it is a topological group. For example, we show that every separable pseudocompact group is a topological group. We also show that every locally pseudocompact group whose multiplication is jointly continuous is a topological group. *2010 Mathematics Subject Classification: Primary 22A10, 54E52, 54D30.
Keywords: Semitopological Group, Topological Group, Separate Continuity, Joint Continuity, Pseudo-Compactness, Topological Games, Quasi-Continuity
@article{MEM_2012_41_1_a0,
     author = {Choban, Mitrofan and Kenderov, Petar and Moors, Warren},
     title = {Pseudo-Compact {Semi-Topological} {Groups}},
     journal = {Mathematics and Education in Mathematics},
     pages = {53--60},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a0/}
}
TY  - JOUR
AU  - Choban, Mitrofan
AU  - Kenderov, Petar
AU  - Moors, Warren
TI  - Pseudo-Compact Semi-Topological Groups
JO  - Mathematics and Education in Mathematics
PY  - 2012
SP  - 53
EP  - 60
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a0/
LA  - en
ID  - MEM_2012_41_1_a0
ER  - 
%0 Journal Article
%A Choban, Mitrofan
%A Kenderov, Petar
%A Moors, Warren
%T Pseudo-Compact Semi-Topological Groups
%J Mathematics and Education in Mathematics
%D 2012
%P 53-60
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a0/
%G en
%F MEM_2012_41_1_a0
Choban, Mitrofan; Kenderov, Petar; Moors, Warren. Pseudo-Compact Semi-Topological Groups. Mathematics and Education in Mathematics, Tome 41 (2012) no. 1, pp. 53-60. http://geodesic.mathdoc.fr/item/MEM_2012_41_1_a0/