On Binary Self-Dual Codes of Length 62 with an Automorphism of Order 7
Mathematics and Education in Mathematics, Tome 40 (2011) no. 1, pp. 223-228.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We classify up to equivalence all optimal binary self-dual [62, 31, 12] codes having an automorphism of order 7 with 8 independent cycles. Using a method for constructing self-dual codes via an automorphism of odd prime order, we prove that there are exactly 8 inequivalent such codes. Three of the obtained codes have weight enumerator, previously unknown to exist. *2000 Mathematics Subject Classification: 94B05.
Keywords: Self-Dual Codes, Automorphisms, Optimal Codes
@article{MEM_2011_40_1_a22,
     author = {Yankov, Nikolay},
     title = {On {Binary} {Self-Dual} {Codes} of {Length} 62 with an {Automorphism} of {Order} 7},
     journal = {Mathematics and Education in Mathematics},
     pages = {223--228},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a22/}
}
TY  - JOUR
AU  - Yankov, Nikolay
TI  - On Binary Self-Dual Codes of Length 62 with an Automorphism of Order 7
JO  - Mathematics and Education in Mathematics
PY  - 2011
SP  - 223
EP  - 228
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a22/
LA  - en
ID  - MEM_2011_40_1_a22
ER  - 
%0 Journal Article
%A Yankov, Nikolay
%T On Binary Self-Dual Codes of Length 62 with an Automorphism of Order 7
%J Mathematics and Education in Mathematics
%D 2011
%P 223-228
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a22/
%G en
%F MEM_2011_40_1_a22
Yankov, Nikolay. On Binary Self-Dual Codes of Length 62 with an Automorphism of Order 7. Mathematics and Education in Mathematics, Tome 40 (2011) no. 1, pp. 223-228. http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a22/