On some Finite-Dimensional Representations of Artin Braid Group
Mathematics and Education in Mathematics, Tome 40 (2011) no. 1, pp. 33-41.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The author studies certain homomorphic images G of the Artin braid group on n strands in finite symmetric groups. Any permutation group G is an extension of the symmetric group on n letters by an appropriate abelian group. The extension G depends on an integer parameter q ≥ 1, and splits if and only if 4 does not divide q. In the case when q is odd, all finite-dimensional irreducible representations of G are found, thus finding an infinite series of irreducible representations of the braid group. *2000 Mathematics Subject Classification: 20C15, 20C35, 20F36.
Keywords: Artin Braid Group, Permutation Representation, Split Extension, Finite-Dimensional, Irreducible Representation
@article{MEM_2011_40_1_a0,
     author = {Iliev, Valentin},
     title = {On some {Finite-Dimensional} {Representations} of {Artin} {Braid} {Group}},
     journal = {Mathematics and Education in Mathematics},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a0/}
}
TY  - JOUR
AU  - Iliev, Valentin
TI  - On some Finite-Dimensional Representations of Artin Braid Group
JO  - Mathematics and Education in Mathematics
PY  - 2011
SP  - 33
EP  - 41
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a0/
LA  - en
ID  - MEM_2011_40_1_a0
ER  - 
%0 Journal Article
%A Iliev, Valentin
%T On some Finite-Dimensional Representations of Artin Braid Group
%J Mathematics and Education in Mathematics
%D 2011
%P 33-41
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a0/
%G en
%F MEM_2011_40_1_a0
Iliev, Valentin. On some Finite-Dimensional Representations of Artin Braid Group. Mathematics and Education in Mathematics, Tome 40 (2011) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/MEM_2011_40_1_a0/