Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle
Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 105-113
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
An extension
of Duhamel principle, known for evolution equations, is proposed. An operational
calculus approach for explicit solution of these problems is developed. A classical
example of such BVP is the Bitsadze – Samarskii problem.
Keywords:
Nonlocal BVP, Right-Inverse Operator, Extended Duamel Principle, Generalized Solution, Convolution, Multiplier, Multipliers Fraction
@incollection{MEM_2010_39_1_a6,
author = {Dimovski, Ivan and Tsankov, Yulian},
title = {Nonlocal {Boundary} {Value} {Problems} for {Two-Dimensional} {Potential} {Equation} on a {Rectangle}},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {105--113},
year = {2010},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a6/}
}
TY - JOUR AU - Dimovski, Ivan AU - Tsankov, Yulian TI - Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle JO - Mathematics and Education in Mathematics PY - 2010 SP - 105 EP - 113 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a6/ LA - en ID - MEM_2010_39_1_a6 ER -
Dimovski, Ivan; Tsankov, Yulian. Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle. Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a6/