Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle
Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 105-113.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

An extension of Duhamel principle, known for evolution equations, is proposed. An operational calculus approach for explicit solution of these problems is developed. A classical example of such BVP is the Bitsadze – Samarskii problem.
Keywords: Nonlocal BVP, Right-Inverse Operator, Extended Duamel Principle, Generalized Solution, Convolution, Multiplier, Multipliers Fraction
@article{MEM_2010_39_1_a6,
     author = {Dimovski, Ivan and Tsankov, Yulian},
     title = {Nonlocal {Boundary} {Value} {Problems} for {Two-Dimensional} {Potential} {Equation} on a {Rectangle}},
     journal = {Mathematics and Education in Mathematics},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a6/}
}
TY  - JOUR
AU  - Dimovski, Ivan
AU  - Tsankov, Yulian
TI  - Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle
JO  - Mathematics and Education in Mathematics
PY  - 2010
SP  - 105
EP  - 113
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a6/
LA  - en
ID  - MEM_2010_39_1_a6
ER  - 
%0 Journal Article
%A Dimovski, Ivan
%A Tsankov, Yulian
%T Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle
%J Mathematics and Education in Mathematics
%D 2010
%P 105-113
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a6/
%G en
%F MEM_2010_39_1_a6
Dimovski, Ivan; Tsankov, Yulian. Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle. Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a6/