Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4
Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 141-148
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We find explicitly all bi-umbilical foliated semi-symmetric hypersurfaces in the four-
dimensional Euclidean space. *2000 Mathematics Subject Classification: 35A07, 35J60, 53A07, 53A10.
Keywords:
Foliated Semi-symmetric Hypersurfaces, Bi-umbilical Semi-symmetric Hypersurfaces, Surfaces in the 3-dimensional Sphere, Non-Linear Elliptic Systems
@incollection{MEM_2010_39_1_a11,
author = {Kutev, Nikolai and Milousheva, Velichka},
title = {Complete {Integrability} of a {Nonlinear} {Elliptic} {System,} {Generating} {Bi-umbilical} {Foliated} {Semi-symmetric} {Hypersurfaces} in {R^4}},
booktitle = {},
series = {Mathematics and Education in Mathematics},
pages = {141--148},
year = {2010},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/}
}
TY - JOUR AU - Kutev, Nikolai AU - Milousheva, Velichka TI - Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4 JO - Mathematics and Education in Mathematics PY - 2010 SP - 141 EP - 148 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/ LA - en ID - MEM_2010_39_1_a11 ER -
%0 Journal Article %A Kutev, Nikolai %A Milousheva, Velichka %T Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4 %J Mathematics and Education in Mathematics %D 2010 %P 141-148 %V 39 %N 1 %U http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/ %G en %F MEM_2010_39_1_a11
Kutev, Nikolai; Milousheva, Velichka. Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4. Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/