Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4
Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 141-148.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We find explicitly all bi-umbilical foliated semi-symmetric hypersurfaces in the four- dimensional Euclidean space. *2000 Mathematics Subject Classification: 35A07, 35J60, 53A07, 53A10.
Keywords: Foliated Semi-symmetric Hypersurfaces, Bi-umbilical Semi-symmetric Hypersurfaces, Surfaces in the 3-dimensional Sphere, Non-Linear Elliptic Systems
@article{MEM_2010_39_1_a11,
     author = {Kutev, Nikolai and Milousheva, Velichka},
     title = {Complete {Integrability} of a {Nonlinear} {Elliptic} {System,} {Generating} {Bi-umbilical} {Foliated} {Semi-symmetric} {Hypersurfaces} in {R^4}},
     journal = {Mathematics and Education in Mathematics},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/}
}
TY  - JOUR
AU  - Kutev, Nikolai
AU  - Milousheva, Velichka
TI  - Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4
JO  - Mathematics and Education in Mathematics
PY  - 2010
SP  - 141
EP  - 148
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/
LA  - en
ID  - MEM_2010_39_1_a11
ER  - 
%0 Journal Article
%A Kutev, Nikolai
%A Milousheva, Velichka
%T Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4
%J Mathematics and Education in Mathematics
%D 2010
%P 141-148
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/
%G en
%F MEM_2010_39_1_a11
Kutev, Nikolai; Milousheva, Velichka. Complete Integrability of a Nonlinear Elliptic System, Generating Bi-umbilical Foliated Semi-symmetric Hypersurfaces in R^4. Mathematics and Education in Mathematics, Tome 39 (2010) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/MEM_2010_39_1_a11/