Using multiplex virtual PCR for genetic barcoding of \emph{Tequatrovirus} bacteriophages
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 369-392

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the possibility of using the multiplex virtual PCR method to develop approaches to barcoding the genomes of T4-type bacteriophages. A comparison of the multiplex virtual PCR method and phylogenomic analysis based on alignment-free approach was performed. A dataset of Tequatrovirus genomes previously selected for pangenomic analysis was used for this study. The genomes used were preliminarily checked for their adequate annotation and, accordingly, sequencing accuracy. A study using the multiplex virtual PCR method was carried out for 67 genomes, barcodes were generated, and similarity parameters were determined. Based on the obtained data, a phylogenetic tree was constructed using the neighbor joining method. For the same set of Straboviridae bacteriophage genomes, a phylogenomic tree was constructed based on pairwise distance matriС… between oligonucleotide 10-mer sets. Comparison of these two trees showed differences in branching between the control distantly related genomes from the genera Mosigvirus and Dhakavirus, and the branch of the genomes of bacteriophages of the genus Tequatrovirus. The authors of the work suggested that these differences may reflect the features of the multiplex virtual PCR method, which is more applicable for assessing the similarity of closely related genomes than within genomes with an identity degree of less than 75%. It can be concluded that the multiplex virtual PCR method allows one to distinguish taxonomic groups of large bacteriophages, which include T4-type bacteriophages, at the genus level. Thus, using this method, within the genus of such bacteriophages one can more accurately compare the genomes of viruses with a length of about 170 kb. From a practical point of view, multiplex virtual PCR is quite applicable for including barcodes compiled on its basis in the bacteriophage passport for use in the practice of phage therapy.
@article{MBB_2024_19_2_a4,
     author = {O. Y. Kiryanova and S. S. Kiselev and V. V. Panyukov and N. A. Nikulin and N. N. Nazipova and A. V. Chemeris and A. A. Zimin},
     title = {Using multiplex virtual {PCR} for genetic barcoding of {\emph{Tequatrovirus}} bacteriophages},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {369--392},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a4/}
}
TY  - JOUR
AU  - O. Y. Kiryanova
AU  - S. S. Kiselev
AU  - V. V. Panyukov
AU  - N. A. Nikulin
AU  - N. N. Nazipova
AU  - A. V. Chemeris
AU  - A. A. Zimin
TI  - Using multiplex virtual PCR for genetic barcoding of \emph{Tequatrovirus} bacteriophages
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 369
EP  - 392
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a4/
LA  - ru
ID  - MBB_2024_19_2_a4
ER  - 
%0 Journal Article
%A O. Y. Kiryanova
%A S. S. Kiselev
%A V. V. Panyukov
%A N. A. Nikulin
%A N. N. Nazipova
%A A. V. Chemeris
%A A. A. Zimin
%T Using multiplex virtual PCR for genetic barcoding of \emph{Tequatrovirus} bacteriophages
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 369-392
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a4/
%G ru
%F MBB_2024_19_2_a4
O. Y. Kiryanova; S. S. Kiselev; V. V. Panyukov; N. A. Nikulin; N. N. Nazipova; A. V. Chemeris; A. A. Zimin. Using multiplex virtual PCR for genetic barcoding of \emph{Tequatrovirus} bacteriophages. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 2, pp. 369-392. http://geodesic.mathdoc.fr/item/MBB_2024_19_2_a4/

[1] C. L. Ventola, “The antibiotic resistance crisis: part 1: causes and threats”, Pharmacy and Therapeutics, 40:4 (2015), 277–283

[2] C. L. Ventola, “The antibiotic resistance crisis: part 2: management strategies and new agents”, Pharmacy and Therapeutics, 40:5 (2015), 344–352

[3] Gorski A., Miedzybrodzki R., Weber-Dabrowska B., Fortuna W., Letkiewicz S., Rogoz P., E. Jonczyk-Matysiak, K. Dabrowska, J. Majewska, J. Borysowski, “Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases”, Front. Microbiol, 7 (2016), 1515 | DOI | DOI

[4] Z. Golkar, O. Bagasra, D. G. Pace, “Bacteriophage therapy: a potential solution for the antibiotic resistance crisis”, J. Infect. Dev. Ctries, 8:2 (2014), 129–136 | DOI | DOI

[5] N. Nikulin, A. Nikulina, A. Zimin, R. Aminov, “Phages for treatment of Escherichia coli infections”, Prog. Mol. Biol. Transl. Sci, 200 (2023), 171–206 | DOI | DOI

[6] M. Lusiak-Szelachowska, R. Miedzybrodzki, Z. Drulis-Kawa, K. Cater, P. Knezevic, C. Winogradow, K. Amaro, E. Jonczyk-Matysiak, B. Weber-Dabrowska, J. Rekas et al, “Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far”, J. Biomed. Sci, 29 (2022), 23 | DOI | DOI

[7] Romero-Calle D., Guimaraes Benevides R., Goes-Neto A., Billington C., “Bacteriophages as alternatives to antibiotics in clinical care”, Antibiotics, 8 (2019), 23 | DOI | DOI

[8] E. H. Hankin, “L'action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera”, Annales de l'Institut Pasteur, 10 (1896), 511–523 (In French)

[9] N. F. Gamaleya, “Bakterioliziny fermenty, razrushayuschie bakterii”, Russkii arkhiv patologii, 1898, no. 6, 607–613

[10] F. W. Twort, “An investigation on the nature of ultra-microscopic viruses”, Lancet, 186 (1915), 1241–1243 | DOI | DOI

[11] F. d'Herelle, “Sur un microbe invisible antagoniste des bacilles dysenteriques”, C. R. Hebd. Seances Acad. Sci, 165:11 (1917), 373–375 (In French)

[12] K. Moelling, F. Broecker, C. Willy, “A wake-up call: we need phage therapy now”, Viruses, 10 (2018), 688 | DOI | DOI

[13] S. Abedon, K. Danis-Wlodarczyk, D. Alves, Phage therapy in the 21st century: is there modern, clinical evidence of phage-mediated efficacy?, Pharmaceuticals, 14 (2021) | DOI | DOI

[14] M. Kamel, S. Aleya, M. Alsubih, L. Aleya, “Microbiome dynamics: a paradigm shift in combatting infectious diseases”, J. Pers. Med, 14:2 (2024) | DOI | DOI

[15] C. Chang, X. Yu, W. Guo, C. Guo, X. Guo, Q. Li, Y. Zhu, “Bacteriophage-mediated control of biofilm: a promising new dawn for the future”, Front. Microbiol, 13 (2022) | DOI | DOI

[16] C. R. Merril, B. Biswas, R. Carlton, N. C. Jensen, G. J. Creed, S. Zullo, S. Adhya, “Long circulating bacteriophage as antibacterial agents”, Proc. Natl Acad. Sci. USA, 93 (1996), 3188–3192 | DOI | DOI

[17] A. A. Zimin, A. M. Butanaev, N. E. Suzina, N. E. Skoblikov, L. R. Sakhabutdinova, N. V. Prisyazhnaya, S. I. Kononenko, A. G. Kaschaev, “Konstruirovanie mutantov bakteriofaga T4 so snizhennoi antigennostyu”, Nauchnyi zhurnal KubGAU, 2017, no. 134(10), 34 | DOI | DOI

[18] N. A. Nikulin, S. I. Kononenko, A. G. Koschaev, A. A. Zimin, “Konstruirovanie terapevticheskikh fagovykh kokteilei na osnove bakteriofagov: preimuschestva i nedostatki”, Nauchnyi zhurnal KubGAU, 2017, no. 133(9), 63 | DOI | DOI

[19] O. Yu. Kiryanova, I. I. Kiryanov, B. R. Kuluev, R. R. Garafutdinov, A. V. Chemeris, I. M. Gubaidullin, “Multipleksnyi in silico RAPD-analiz dlya barkodirovaniya genomov”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 208–229 | DOI | DOI

[20] O. Yu. Kiryanova, R. R. Garafutdinov, D. A. Chemeris, G. A. Geraschenkov, Yu. R. Giniyatov, I. M. Gubaidullin, A. V. Chemeris, “Polimorfizm DNK sobak (Canis familiaris L). VI. Genomnoe in silico shtrikhkodirovanie sobachikh genomov i genomov ikh dikikh sorodichei”, Biomika, 14:1 (2022), 59–67 | DOI | MR | DOI | MR

[21] O. Yu. Kiryanova, B. R. Kuluev, A. R. Kuluev, I. S. Mardanshin, I. M. Gubaidullin, A. V. Chemeris, “Multipleksnyi in silico RAPD-analiz ryada rodstvennykh rastenii s otlichayuschimisya razmerami genomov i perspektivy takogo podkhoda dlya DNK pasportizatsii sortov selskokhozyaistvennykh rastenii”, Biomika, 12:2 (2020), 194–210 | DOI | DOI

[22] N. A. Nikulin, A. A. Zimin, “Influence of non-canonical DNA bases on the genomic diversity of Tevenvirinae”, Front. Microbiol, 12 (2021) | DOI | DOI

[23] T. Brettin, J. Davis, T. Disz, R. A. Edwards, S. Gerdes, G. J. Olsen, R. Olson, R. Overbeek, B. Parrello, G. D. Pusch, M. Shukla et al, “RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes”, Sci. Rep, 5 (2015), 8365 | DOI | DOI

[24] A. R. Wattam, J. J. Davis, R. Assaf, S. Boisvert, T. Brettin, C. Bun, N. Conrad, E. M. Dietrich, T. Disz, J. L. Gabbard et al, “Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center”, Nucleic Acids Res., 45:D1 (2017), D535-D542 | DOI | DOI

[25] D. M. Kristensen, L. Kannan, M. K. Coleman, Y. I. Wolf, A. Sorokin, E. V. Koonin, A. Mushegian, “A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches”, Bioinformatics, 26:12 (2010), 1481–1487 | DOI | DOI

[26] B. Contreras-Moreira, P. Vinuesa, “GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis”, Appl. Environ. Microbiol, 79:24 (2013), 7696–7701 | DOI | DOI

[27] V. M. Petrov, S. Ratnayaka, J. M. Nolan, E. S. Miller, J. D. Karam, “Genomes of the T4 related bacteriophages as windows on microbial genome evolution”, Virol. J., 7 (2010), 292 | DOI | DOI

[28] E. S. Miller, E. Kutter, G. Mosig, F. Arisaka, T. Kunisawa, W. Ruger, “Bacteriophage T4 genome”, Microbiol. Mol. Biol. Rev, 67:1 (2003), 86–156 | DOI | DOI

[29] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms”, Mol. Biol. Evol, 35:6 (2018), 1547–1549 | DOI | DOI

[30] N. Saitou, M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees”, Molecular Biology and Evolution, 4:4 (1987), 406–425 | DOI | DOI

[31] N. A. Nikulin, S. S. Kiselev, V. V. Panyukov, Y. Lu, A. A. Zimin, “Comparative analysis of Actinobacteria phage-plasmids and their transduction potential”, Mathematical Biology and Bioinformatics, 18 (2023), 323–346 | DOI | DOI

[32] T. Sorensen, “A method of establishing groups of equal amplitudes in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons”, Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter, 5 (1948), 1–34

[33] J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum likelihood approach”, J. Mol. Evol, 17 (1981), 368–376 | DOI | DOI

[34] R. C. Edgar, “MUSCLE: Multiple sequence alignment with high accuracy and high throughput”, Nucleic Acids Res, 32 (2004), 1792–1797 | DOI | DOI

[35] G. Schwarz, “Estimating the dimension of a model”, Ann. Stat, 6 (1978), 461–464 | DOI | MR | Zbl | DOI | MR | Zbl

[36] J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap”, Evolution, 39 (1985), 783–791 | DOI | DOI

[37] O. Yu. Kiryanova, I. I. Kiryanov, R. R. Garafutdinov, A. V. Chemeris, I. M. Gubaidullin, Programma dlya EVM No 2021667097 GATCGgenerator (data registratsii 25.10.2021) https://onlinepatent.ru/software/2021667097/

[38] S. Tavare, “Some probabilistic and statistical problems in the analysis of DNA sequences”, Lect. Mathem. Life Sci, 17 (1986), 57–86 | MR | Zbl | MR | Zbl

[39] X. Gu, Y. X. Fu, W. H. Li, “Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites”, Mol. Biol. Evol, 12 (1995), 546–557 | DOI | DOI

[40] S. Whelan, N. Goldman, “A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach”, Mol. Biol. Evol, 18 (2001), 691–699 | DOI | MR | DOI | MR

[41] D. L. Church, L. Cerutti, A. Gurtler, T. Griener, A. Zelazny, S. Emler, “Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory”, Clin. Microbiol. Rev., 33 (2020), e0005319 | DOI | DOI

[42] W. Ludwig, K. H. Schleifer, “Bacterial phylogeny based on 16S and 23S rRNA sequence analysis”, FEMS Microbiol. Rev, 15:2-3 (1994), 155–173 | DOI | DOI

[43] M. Guo, C. Yuan, L. Tao, Y. Cai, W. Zhang, “Life barcoded by DNA barcodes”, Conserv. Genet. Resour, 14:4 (2022), 351–365 | DOI | DOI

[44] A. Regueira-Iglesias, C. Balsa-Castro, T. Blanco-Pintos, I. Tomas, “Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis”, Mol. Oral Microbiol, 38:5 (2023), 347–399 | DOI | DOI

[45] M. Morsli, F. Salipante, C. Magnan, C. Dunyach-Remy, A. Sotto, J. P. Lavigne, “Direct metagenomics investigation of non-surgical hard-to-heal wounds: a review”, Ann. Clin. Microbiol. Antimicrob, 23:1 (2024) | DOI | DOI

[46] M. T. Kuo, J. L. Chen, S. L. Hsu, A. Chen, H. L. You, “An omics approach to diagnosing or investigating fungal keratitis”, Int. J. Mol. Sci, 20:15 (2019) | DOI | Zbl | DOI | Zbl

[47] P. Drevinek, R. Hollweck, M. G. Lorenz, M. Lustig, T. Bjarnsholt, “Direct 16S/18S rRNA gene PCR followed by Sanger sequencing as a clinical diagnostic tool for detection of bacterial and fungal infections: a systematic review and meta-analysis”, J. Clin. Microbiol, 61:9 (2023) | DOI | DOI

[48] S. H. Poulsen, K. K. Sogaard, K. Fuursted, H. L. Nielsen, “Evaluating the diagnostic accuracy and clinical utility of 16S and 18S rRNA gene targeted next-generation sequencing based on five years of clinical experience”, Infect. Dis. (Lond.), 55:11 (2023), 767–775 | DOI | DOI

[49] P. D. Hebert, A. Cywinska, S. L. Ball, J. R. deWaard, “Biological identifications through DNA barcodes”, Proc. Biol. Sci, 270:1512 (2003), 313–321 | DOI | DOI

[50] Y. Zhu, J. Shang, C. Peng, Y. Sun, “Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework”, Front. Microbiol, 13 (2022), 1032186 | DOI | DOI

[51] D. Turner, E. M. Adriaenssens, S. M. Lehman, C. Moraru, A. M. Kropinski, “Bacteriophage taxonomy: a continually evolving discipline”, Methods Mol. Biol, 2734 (2024), 27–45 | DOI | DOI

[52] M. Krupovic, D. Turner, V. Morozova, M. Dyall-Smith, H. M. Oksanen, R. Edwards, B. E. Dutilh, S. M. Lehman, A. Reyes, D. P. Baquero et al, “Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021”, Arch. Virol, 166:11 (2021), 3239–3244 | DOI | DOI

[53] F. M. Zerbini, S. G. Siddell, E. J. Lefkowitz, A. R. Mushegian, E. M. Adriaenssens, P. Alfenas Zerbini, D. M. Dempsey, B. E. Dutilh, M. L. Garcia, R. C. Hendrickson et al, “Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2023)”, Arch. Virol, 168:7 (2023), 175 | DOI | DOI

[54] E. Adriaenssens, J. R. Brister, “How to name and classify your phage: an informal guide”, Viruses, 9:4 (2017), 70 | DOI | DOI

[55] R. C.Y. Lin, J. Iredell, A. Khatami, After the paper: Australian Phage Network (accessed 18.10.2024) https://communities.springernature.com/posts/after-the-paper-australian-phage-network

[56] J. Onsea, P. Soentjens, S. Djebara, M. Merabishvili, M. Depypere, I. Spriet, P. De Munter, Y. Debaveye, S. Nijs, P. Vanderschot et al, “Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol”, Viruses, 11:10 (2019), 891 | DOI | DOI

[57] J. P. Pirnay, G. Verbeken, P. J. Ceyssens, I. Huys, D. De Vos, C. Ameloot, Fauconnier A., “The magistral phage”, Viruses, 10:2 (2018), 64 | DOI | DOI

[58] S. B. Gibson, S. I. Green, C. G. Liu, K. C. Salazar, J. R. Clark, A. L. Terwilliger, H. B. Kaplan, A. W. Maresso, B. W. Trautner, R. F. Ramig, “Constructing and characterizing bacteriophage libraries for phage therapy of human infections”, Frontiers in Microbiology, 10 (2019), 2537 | DOI | DOI