A note on the formation of polaron states in a homogeneous chain
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 171-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

Today in many articles charge propagation in biopolymers, for example, in DNA, have been modeled with different variants of boundary conditions – free ends or ring. It is assumed that for long chains, the ends practically do not affect the charge dynamics, and this is true in most cases. In this note, we discuss the case when these boundary conditions lead to significantly different results
@article{MBB_2022_17_2_a16,
     author = {V. D. Lakhno and N. S. Fialko},
     title = {A note on the formation of polaron states in a homogeneous chain},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {171--173},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a16/}
}
TY  - JOUR
AU  - V. D. Lakhno
AU  - N. S. Fialko
TI  - A note on the formation of polaron states in a homogeneous chain
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 171
EP  - 173
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a16/
LA  - ru
ID  - MBB_2022_17_2_a16
ER  - 
%0 Journal Article
%A V. D. Lakhno
%A N. S. Fialko
%T A note on the formation of polaron states in a homogeneous chain
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 171-173
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a16/
%G ru
%F MBB_2022_17_2_a16
V. D. Lakhno; N. S. Fialko. A note on the formation of polaron states in a homogeneous chain. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 171-173. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a16/

[1] G. Kalosakas, “Multi-peaked localized states of DNLS in one and two dimensions”, Physica D, 216 (2006), 44–61 | DOI

[2] E. Diaz, R. P.A. Lima, F. Dominguez-Adame, “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 | DOI

[3] B. Luo, J. Ye, Guan C, Y. Zhao, “Validity of time-dependent trial states for the Holstein polaron”, Phys. Chem. Chem. Phys, 12 (2010), 15073–15084 | DOI

[4] O. G. Cantu Ros, L. Cruzeiro, M. G. Velarde, W. Ebeling, “On the possibility of electric transport mediated by long living intrinsic localized solectron modes”, Eur. Phys. J. B, 80 (2011), 545–554 | DOI

[5] L. Chen, Y. Zhao, Y. Tanimura, “Dynamics of a one-dimensional holstein polaron with the hierarchical equations of motion approach”, J. Phys. Chem. Lett, 6:15 (2015), 3110–3115 | DOI

[6] L. A. Cisneros-Ake, L. Cruzeiro, M. G. Velarde, “Mobile localized solutions for an electron in lattices with dispersive and non-dispersive phonons”, Physica D, 306 (2015), 82–93 | DOI

[7] C. B. Tabi, A. D. Koko, R. O. Doko, H. P. Ekobena Fouda, T. C. Kofane, “Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction”, Physica A, 442 (2016), 498–509 | DOI

[8] M. G. Velarde, “Nonlinear dynamics and the nano-mechanical control of electrons in crystalline solids. Nano-mechanical control of electrons”, Eur. Phys. J. Special Topics, 225 (2016), 921–941 | DOI

[9] N. K. Voulgarakis, “The effect of thermal fluctuations on Holstein polaron dynamics in electric field”, Physica B: Cond. Matt, 519 (2017), 15–20 | DOI

[10] S. E. Madiba, C. B. Tabi, H. P.F. Ekobena, T. C. Kofane, “Long-range energy modes in alpha-helix lattices with inter-spine coupling”, Physica A, 514 (2019), 298–310 | DOI

[11] Z. Huang, Hoshina M, H. Ishihara, Y. Zhao, “Transient dynamics of super Bloch oscillations of a 1D Holstein polaron under the influence of an external AC electric field”, Ann. Phys. (Berlin), 531 (2019), 1800303 | DOI

[12] V. D. Lakhno, A. N. Korshunova, “Formirovanie statsionarnykh elektronnykh sostoyanii v odnorodnykh molekulyarnykh tsepochkakh konechnoi dliny”, Mat. biol. i bioinf, 5:1 (2010), 1–29 | DOI

[13] V. D. Lakhno, A. N. Korshunova, “Modelirovanie obrazovaniya samozakhvachennogo sostoyaniya v polinukleotidnoi tsepochke”, Nelineinaya dinamika, 4:2 (2008), 193–214

[14] V. D. Lakhno, N. S. Fialko, “On the dynamics of a polaron in a classical chain with finite temperature”, J. Exp. Theor. Phys, 120 (2015), 125–131 | DOI