The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 452-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field. The calculations performed show that Bloch oscillations arising in the course of the polaron oscillatory motion along the chain do not completely disappear when the polaron’s motion along the chain becomes uniform. When the polaron moves uniformly along the chain, Bloch oscillations are also observed, although in a slightly different form. It is shown that the shape of the electron density distribution in a polaron during its stationary motion in a constant electric field takes an explicit structure. In this case, such characteristics of Bloch oscillations as the period of Bloch oscillations and the maximum Bloch amplitude demonstrate low-density components of the polaron.
@article{MBB_2022_17_2_a14,
     author = {A. N. Korshounova and V. D. Lakhno},
     title = {The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {452--464},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a14/}
}
TY  - JOUR
AU  - A. N. Korshounova
AU  - V. D. Lakhno
TI  - The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 452
EP  - 464
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a14/
LA  - ru
ID  - MBB_2022_17_2_a14
ER  - 
%0 Journal Article
%A A. N. Korshounova
%A V. D. Lakhno
%T The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 452-464
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a14/
%G ru
%F MBB_2022_17_2_a14
A. N. Korshounova; V. D. Lakhno. The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 452-464. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a14/

[1] T. Holstein, “Studies of polaron motion: The molecular-crystal model. Part I”, Annals of Phys., 8 (1959), 325–342 | DOI

[2] T. Holstein, “Studies of polaron motion: The “small” polaron. Part II”, Annals of Phys., 8 (1959), 343–389 | DOI

[3] D. Hennig, E. B. Starikov, J. F.R. Archilla, F. Palmero, “Charge Transport in Poly(dG)-Poly(dC) and Poly(dA)-Poly(dT) DNA Polymers”, Journal of Biological Physics, 30:3 (2004), 227–238 | DOI

[4] Z. Huang, M. Hoshina, H. Ishihara, Y. Zhao, “Transient dynamics of super Bloch oscillations of a one dimensional Holstein polaron under the influence of an external AC electric field”, Annalen der Physik, 529 (2017), 1600367 | DOI

[5] D. Hennig, A. D. Burbanks, A. H. Osbaldestin, “Directed current in the Holstein system”, Phys. Rev. E, 83 (2011), 031121 | DOI

[6] L. V. Yakushevich, V. N. Balashova, F. K. Zakiryanov, “On the DNA Kink Motion Under the Action of Constant Torque”, Math. Biol. Bioinf, 11:1 (2016), 81–90 | DOI

[7] E. B. Starikov, J. P. Lewis, O. F. Sankey, “Base sequence effects on charge carrier generation in DNA: a theoretical study”, International Journal of Modern Physics B, 19:29 (2005), 4331–4357 | DOI

[8] A. S. Davydov, Solitons in Molecular systems, Reidel Publ. Comp., Boston, USA, 1985, 413 pp. | DOI

[9] A. C. Scott, “Davydov's soliton”, Phys. Rep., 217:1 (1992), 1–67 | DOI

[10] P. J. De Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Herrero, P. Herrero, A. M. Baro, P. Ordejon, J. M. Soler, E. Artacho, “Absence of dc-Conductivity in-DNA”, Phys. Rev. Lett, 85 (2000), 4992–4995 | DOI

[11] D. Porath, A. Bezryadin, S. De Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 | DOI

[12] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, Kim Jinhee, J. J. Kim, H. Y. Lee, T. Kawai, Choi Han Yong, “Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules”, Phys. Rev. Lett, 87 (2001), 198102 | DOI

[13] A. Y. Kasumov, M. Kociak, S. Gue?ron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-Induced Superconductivity in DNA”, Science, 291:5502 (2001), 280–282 | DOI

[14] A. Chepeliaskii, D. Klinov, A. Kasumov, S. Gueron, O. Pietrement, S. Lyonnais, H. Bouchiat, “Conduction of DNA molecules attached to a disconnected array of metallic Ga nanoparticles”, New J. Phys, 13 (2011), 063046 | DOI

[15] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem, 237 (2004), 183–227 | DOI

[16] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Phys. Rev. E, 100 (2019), 052203 | DOI

[17] R. G. Eudres, D. L. Cox, R. R.P. Singh, “Colloquium: The quest for high-conductance DNA”, Rev. Mod. Phys, 76 (2004), 195–214 | DOI

[18] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem, 108 (2008), 1970–1981 | DOI

[19] A. Offenhausse, R. Rinald, Nanobioelectronics for Electronics, Biology and Medicine, Springer, N.Y., 2009

[20] M. Taniguchi, T. Kawai, “DNA electronics”, Physica E, 33 (2006), 1–12 | DOI

[21] E. M. Conwell, S. V. Rakhmanova, “Polarons in DNA”, Proc. Natl. Acad. Sci, 97 (2000), 4556–4560 | DOI

[22] K. Voulgarakis Nikolaos, “The effect of thermal fluctuations on Holstein polaron dynamics in electric Field”, Physica B, 519 (2017), 5–20 | DOI

[23] N. S. Fialko, V. D. Lakhno, “Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations”, Math. Biol. Bioinf, 14:2 (2019), 406–419 | DOI

[24] M. A. Fuentes, P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, V. M. Kenkre, Yu. B. Gaididei, “Multipeaked polarons in soft potentials”, Phys. Rev. E, 70 (2004), 025601(R) | DOI

[25] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Polaron normal modes in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 68 (2003), 174304 | DOI

[26] T. Yu. Astakhova, G. A. Vinogradov, “Polaron in Electric Field and Vibrational Spectrum of Polyacetylene”, Mathematical Biology and Bioinformatics, 14:1 (2019), 150–159 | DOI

[27] A. A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104:41 (2000), 9740–9745 | DOI

[28] J. Jortner, M. Bixon, A. A. Voityuk, N. J. Rosch, “Superexchange Mediated Charge Hopping in DNA”, Phys. Chem. A, 106 (2002), 7599–7606 | DOI

[29] V. D. Lakhno, A. N. Korshunova, “Formation of stationary electronic states in finite homogeneous molecular chains”, Mathematical biology and bioinformatics, 5:1 (2010), 1–29 | DOI

[30] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 | DOI

[31] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys, 26 (2000), 133–147 | DOI

[32] A. N. Korshunova, V. D. Lakhno, “Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field”, Technical Physics, 63:9 (2018), 1270–1276 | DOI

[33] V. D. Lakhno, “Davydov's solitons in a homogeneous nucleotide chain”, Int. J. Quant. Chem., 110 (2010), 127–137 | DOI

[34] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85–87 | DOI

[35] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Euro. Phys. J. B, 79 (2011), 147–151 | DOI