Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_2_a8, author = {A. I. Abakumov and S. Ya. Pak}, title = {Modeling of photosynthesis process and assessing of phytoplankton dynamics based on {Droop} model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {380--393}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a8/} }
TY - JOUR AU - A. I. Abakumov AU - S. Ya. Pak TI - Modeling of photosynthesis process and assessing of phytoplankton dynamics based on Droop model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 380 EP - 393 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a8/ LA - ru ID - MBB_2021_16_2_a8 ER -
%0 Journal Article %A A. I. Abakumov %A S. Ya. Pak %T Modeling of photosynthesis process and assessing of phytoplankton dynamics based on Droop model %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 380-393 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a8/ %G ru %F MBB_2021_16_2_a8
A. I. Abakumov; S. Ya. Pak. Modeling of photosynthesis process and assessing of phytoplankton dynamics based on Droop model. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 2, pp. 380-393. http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a8/
[1] T. Platt, C. L. Gallegos, W. G. Harrison, “Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton”, Journal Marine Research, 38:4 (1980), 687–701
[2] T. Platt, C. Caverhill, S. Sathyendranath, “Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic”, Journal of Geophysical Research: Oceans (1978–2012), 96:C8 (1991), 15147–15159 | DOI
[3] Hilary E. Glover, “Assimilation numbers in cultures of marine phytoplankton”, Journal of Plankton Research, 2:1 (1980), 69–79 | DOI
[4] M. E. Vinogradov, E. A. Shushkina, N. P. Nezlin, V. I. Vedernikov, V. I. Gagarin, “Korrelyatsionnaya svyaz razlichnykh parametrov ekosistemy pelagiali Mirovogo okeana”, Okeanologiya, 39:1 (1999), 64–74
[5] G. D. Farquhar, S. von Caemmerer, J. A. Berry, “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species”, Planta, 149 (1980), 78–90 | DOI
[6] K. E. Lenz, G. E. Host, K. Roskoski, A. Noormets, A. Sober, D. F. Karnosky, “Analysis of a Farquhar-von Caemmerer-Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations”, Environmental Pollution, 158 (2010), 1015–1022 | DOI
[7] T. N. Buckley, G. D. Farquhar, “A new analytical model for whole-leaf potential electron transport rate”, Plant Cell and Environment, 27:12 (2004), 1487–1502 | DOI
[8] A. Nikolaou, P. Hartmann, A. Sciandra, B. Chachuat, O. Bernard, “Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth”, J. Theoret. Biology, 390 (2016), 61–72 | DOI | MR | Zbl
[9] Bernard O., “Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production”, Journal of Process Control, 21 (2011), 1378–1389 | DOI
[10] F. Mairet, O. Bernard, T. Lacour, A. Sciandra, “Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities”, J. IFAC Proceedings, 44 (2011), 10591–10596
[11] Govindjee, H. G. Weger, D. H. Turpin, J. J.S. van Rensen, O. J. de Vos, J. F.H. Snel, “Formate releases carbon dioxide/bicarbonate from thylakoid membranes measurements by mass spectroscopy and infrared gas analyzer”, Naturwissenschaften, 78 (1991), 168–170 | DOI
[12] N. A. Moiseeva, T. Ya. Churilova, T. V. Efimova, O. V. Krivenko, D. N. Matorin, “Fluorescence of Chlorophyll a during Seasonal Water Stratification in the Black Sea”, Physical Oceanography, 26:5 (2019), 425–437 | DOI
[13] P. G. Falkowski, “The Ocean invisible fores”, Scientific American, 54 (2002), 54–61 | DOI
[14] A. I. Aleksanin, P. A. Salyuk, I. E. Stepochkin, I. A. Golik, “Analiz vozdeistviya tropicheskikh tsiklonov na polya kontsentratsii khlorofilla-"A" v Severo-Zapadnoi chasti Tikhogo okeana v 1979–1986 i 1996–2010 gg. s ispolzovaniem dannykh passivnogo sputnikovogo zondirovaniya tsveta okeana”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 11:2 (2014), 219–227
[15] M. R. Droop, “The nutrient status of algal cells in continuous culture”, J. Mar. Biol. Assoc. U. K, 54 (1974), 825–855 | DOI
[16] S. E. Jorgensen, “A eutrophication model for a lake”, J. Ecol. Model, 2 (1976), 147–165 | DOI
[17] V. V. Trofimova, P. R. Makarevich, “Sutochnaya dinamika khlorofilla a fitoplanktonnogo soobschestva estuarnoi zony Kolskogo zaliva (Barentsevo more)”, Algologiya, 19:2 (2009), 145–154 (data obrascheniya: 20.10.2021) http://nbuv.gov.ua/UJRN/algol_2009_19_2_5
[18] A. Le Bouteiller, A. Herbland, “Diel variation of chlorophyll a as evidence from a 13-day station in the equatorial Atlantic Ocean”, Oceanologica Acta, 5:4 (1982), 433–441
[19] V. A. Silkin, A. I. Abakumov, L. A. Pautova, S. V. Pakhomova, A. V. Lifanchuk, “Mechanisms of regulation of invasive processes in phytoplankton on the example of the north-eastern part of the Black Sea”, Aquatic Ecology, 50:2 (2016), 221–234 | DOI
[20] S. I. Babanazarova O. V. Sidelev, “Analiz svyazei pigmentnykh i strukturnykh kharakteristik fitoplanktona vysokoevtrofnogo ozera”, Zhurnal Sibirskogo federalnogo universiteta. Seriya «Biologiya», 1:2 (2008), 162–177
[21] Monitoring sostoyaniya okruzhayuschei sredy na Zapadno-Kamchatskom litsenzionnom uchastke v 2015–2016 gg., Inform. byul., Krasnoyarsk–Petropavlovsk-Kamchatskii, 2015, 376 pp.