Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_2_a6, author = {T. Yu. Astakhova and G. A. Vinogradov}, title = {Polarons on dimerized lattice of polyacetilene. {Continuum} approximation}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {335--348}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a6/} }
TY - JOUR AU - T. Yu. Astakhova AU - G. A. Vinogradov TI - Polarons on dimerized lattice of polyacetilene. Continuum approximation JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 335 EP - 348 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a6/ LA - en ID - MBB_2021_16_2_a6 ER -
T. Yu. Astakhova; G. A. Vinogradov. Polarons on dimerized lattice of polyacetilene. Continuum approximation. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 2, pp. 335-348. http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a6/
[1] Kausar A., “Review on structure, properties and appliance of essential conjugated polymers”, American Journal of Polymer Science Engineering, 4 (2016), 91–102
[2] K. M. Ziadan, “Conducting Polymers Application”, New Polymers for Special Applications, ed. Ailton De Souza Gomes, Federal University of Rio de Janeiro, Brazil, 2012 | DOI
[3] R. Ravichandran, S. Sundarrajan, J. R. Venugopal, Sh. Mukherjee, S. Ramakrishna, “Applications of conducting polymers and their issues in biomedical engineering”, J. R. Soc. Interface, 7 (2010), 559 | DOI
[4] A. J. Heeger, “Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials”, Rev. Mod. Phys., 73 (2001), 681 | DOI
[5] A. G. MacDiarmid, “Nobel Lecture "Synthetic metals": A novel role for organic polymers”, Rev. Mod. Phys., 73 (2001), 707 | DOI
[6] Shirakawa H., “Nobel Lecture: The discovery of polyacetylene film the dawning of an era of conducting polymers”, Rev. Mod. Phys., 73 (2001), 713 | DOI
[7] N. Lu, L. Li, D. Geng, M. Liu, “A review for polaron dependent charge transport in organic semiconductor”, Organic Electronics, 61 (2018), 223 | DOI
[8] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Solitons in polyacetylene”, Phys. Rev. Lett., 42 (1979), 1698 | DOI
[9] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, 22 (1980), 2099 | DOI
[10] E. J. Meier, F. A. An, B. Gadway, “Observation of the topological soliton state in the Su-Schrieffer-Heeger model”, Nat. Commun., 7 (2016), 13986 | DOI
[11] S. Fathizadeh, S. Behnia, “Charge and spin dynamics in DNA nanomolecules: Modeling and applications”, 21st Century Nanoscience A Handbook Bioinspired Systems and Methods, v. 7, ed. Sattler K. D., CRC Press, Boca Raton, 2020, 12 | DOI
[12] A. Terai, Y. Ono, “Phonons around a soliton and a solaron in Su-Schrieffer-Heeger's model of trans-(CH)$_x$”, J. Phys. Soc. Japan, 55 (1986), 213 | DOI
[13] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, J. Phys. Soc. Japan, 59 (1990), 2893 | DOI
[14] S. V. Rakhmanova, E. M. Conwell, “Nonlinear dynamics of an added carrier in trans-polyacetylene in the presence of an electric field”, Synthetic Metals, 110 (2000), 37 | DOI
[15] S. Stafstr"om, “Soliton and polaron transport in trans-polyacetylene”, Phys. Rev. B, 65 (2002), 045207 | DOI
[16] S. Stafstr"om, “Nonadiabatic simulations of polaron dynamics”, Phys. Rev. B, 69 (2004), 235205 | DOI
[17] G. M. e Silva, “Electric-field effects on the competition between polarons and bipolarons in conjugated polymers”, Phys. Rev. B, 61 (2000), 10777 | DOI
[18] L. F. Roncaratti, R. Gargano, G. M. e Silva, “Theoretical temperature dependence of the charge-carrier mobility in semiconducting polymers”, J. Phys. Chem. A, 113 (2009), 14591 | DOI
[19] L. A. Ribeiro, S. S. de Brito, P. H. de Oliveira Neto, “Trap-assisted charge transport at conjugated polymer interfaces”, Chem. Phys. Lett., 644 (2016), 121 | DOI
[20] S. Sun, Y. Zhang, X. Liu, Z. An, “Spectral analysis of polaron dynamics in conjugated polymers”, Phys. Chem., 123 (2019), 28569 | DOI
[21] X. J. Liu, K. Gao, J. Y. Fu, Y. Li, J. H. Wei, S. J. Xie, “Effect of the electric field mode on the dynamic process of a polaron”, Phys. Rev. B, 74 (2006), 172301 | DOI
[22] L. A. Ribeiro, W. F. da Cunha, P. H. de Oliveria Neto, R. Gargano, G. M. e Silva, “Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons”, New J. Chem., 37 (2013), 2829–2836 | DOI
[23] M. V.A. da Silva, P. H. de Oliveira Neto, W. F. da Cunha, R. Gargano, G. M. e Silva, “Supersonic quasi-particles dynamics in organic semiconductors”, Chem. Phys. Let., 550 (2012), 146 | DOI
[24] T. Astakhova, G. Vinogradov, “New aspects of polaron dynamics in electric field”, Eur. Phys. J. B, 92 (2019), 247 | DOI
[25] A. N. Korshunova, V. D. Lakhno, “Various regimes of charge transfer in a Holstein chain in a constant electric field depending on its intensity and the initial charge distribution”, Math. Biology and Bioinformatics, 7 (2018) | DOI
[26] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, A. S. Shigaev, M. G. Velarde, “On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field”, Mechanical control of electrons. Eur. Phys. J. B, 89 (2016), 101 | DOI
[27] T. Astakhova, G. Vinogradov, “Single-electron model for polaron on dimerized lattice”, Math. Biol. Bioinf., 14 (2019), 625 | DOI
[28] T. Astakhova, G. Vinogradov, “Subsonic and supersonic polarons in one-electron model of polyacetylene”, Eur. Phys. J. B, 93 (2020), 127 | DOI
[29] T. Yu. Astakhova, G. A. Vinogradov, V. A. Kashin, “Polaron in an electric field as a generator of coherent lattice vibrations”, Rus. J. Phys. Chem. B, 12:6 (2018), 1 | DOI