Investigation of DNA breather dynamics in a model with non-local inter-site interaction
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 93-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the Peyrard–Bishop–Dauxois model is proposed, which takes account of the partially delocalized nature of DNA stacking interactions. It is shown that the nonlocal nature of the inter-site potential can lead to an increase in the local cooperativity of the base pairs' opening an increasing in the number of simultaneously opening adjacent nucleotide pairs during the denaturation bubble's nucleation. The process of the formation and propagation of mobile breathers excited by the initial displacements of a number of nucleotide pairs has been studied. It is revealed that taking account of the non-local coupling in the Peyrard-Bishop-Dauxois model, while maintaining the remaining parameters of the model, leads to a decrease in the speed of the mobile breather and an increase in the probability of nucleation of the denaturation bubble
@article{MBB_2020_15_1_a6,
     author = {E. I. Geras'kin and V. D. Lakhno and A. P. Chetverikov and A. S. Shigaev},
     title = {Investigation of {DNA} breather dynamics in a model with non-local inter-site interaction},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {93--105},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a6/}
}
TY  - JOUR
AU  - E. I. Geras'kin
AU  - V. D. Lakhno
AU  - A. P. Chetverikov
AU  - A. S. Shigaev
TI  - Investigation of DNA breather dynamics in a model with non-local inter-site interaction
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 93
EP  - 105
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a6/
LA  - ru
ID  - MBB_2020_15_1_a6
ER  - 
%0 Journal Article
%A E. I. Geras'kin
%A V. D. Lakhno
%A A. P. Chetverikov
%A A. S. Shigaev
%T Investigation of DNA breather dynamics in a model with non-local inter-site interaction
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 93-105
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a6/
%G ru
%F MBB_2020_15_1_a6
E. I. Geras'kin; V. D. Lakhno; A. P. Chetverikov; A. S. Shigaev. Investigation of DNA breather dynamics in a model with non-local inter-site interaction. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 93-105. http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a6/

[1] G. P. Triberis, M. Dimakogianni, “DNA in the material world: electrical properties and nano-applications”, Recent Patents on Nanotechnology, 3 (2009), 135–153 | DOI

[2] A. Offenhauser, R. Rinaldi (eds.), Nanobioelectronics-for Electronics, Biology, and Medicine, Springer Science Business Media, 2009

[3] V. D. Lakhno, “DNA Nanobioelectronics”, International Journal of Quantum Chemistry, 108 (2008), 1970–1981 | DOI

[4] V. D. Lakhno, V. B. Sultanov, “Baseline logical elements on the basis of DNA”, International Journal of Quantum Chemistry, 108 (2008), 1913–1920 | DOI

[5] A. N. Korshunova, V. D. Lakhno, “Bystroe formirovanie dvizhuschegosya polyaronnogo sostoyaniya v odnorodnoi molekulyarnoi polinukleotidnoi tsepochke konechnoi dliny”, Preprinty IPM im. M.V. Keldysha, 2018, 231, 22 pp.

[6] V. D. Lakhno, A. N. Korshunova, “Formation of stationary electronic states in finite homogeneous molecular chains”, Math. Biol. Bioinf., 5 (2010), 1–29 | DOI

[7] E. M. Conwell, S. V. Rakhmanova, “Polarons in DNA”, Proc. Natl. Acad. Sci., 97 (2000), 4556–4560 | DOI

[8] A. P. Chetverikov, K. S. Sergeev, V. D. Lakhno, “Zakhvat i transport zaryadov v DNK mobilnymi diskretnymi brizerami”, Mat. biol. i bioinf., 13 (2018), 1–12 | DOI | MR

[9] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, A. S. Shigaev, M. G. Velarde, Eur. Phys. J. B., 89 (2016), 101111

[10] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Physical Review E, 100 (2019), 052203 | DOI

[11] T. Chakraborty, Charge Migration in DNA, Nano Science and Technology, Springer, Berlin–Heidelberg, 2007 | DOI

[12] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Teoreticheskie i eksperimentalnye issledovaniya otkrytykh sostoyanii DNK”, Mat. biol. i bioinf., 8 (2013), 553–664 | DOI

[13] T. Dauxois, M. Peyrard, A. R. Bishop, “Entropy-driven DNA denaturation”, Physical Review E, 47 (1993), R44–R47 | DOI

[14] A. K. Tewari, R. Dubey, “Emerging trends in molecular recognition: utility of weak aromatic interactions”, Bioorganic Medicinal Chemistry, 16 (2008), 126–143 | DOI

[15] F. Gago, “Stacking Interactions and Intercalative DNA Binding”, Methods, 14 (1998), 277–292 | DOI

[16] S. Ares, G. Kalosakas, “Distribution of Bubble Lengths in DNA”, Nano Letters, 7 (2007), 307–311 | DOI

[17] C. H. Choi, G. Kalosakas, K. O. Rasmussen, M. Hiromura, A. R. Bishop, A. Usheva, “DNA dynamically directs its own transcription initiation”, Nucleic Acids Research, 32 (2004), 1584–1590 | DOI

[18] G. Kalosakas, K. O. Rasmussen, A. R. Bishop, C. H. Choi, A. Usheva, “Sequence-specific thermal fluctuations identify start sites for DNA transcription”, Europhysics Letters, 68 (2004), 127–133 | DOI

[19] B. S. Alexandrov, V. Gelev, Y. Monisova, L. B. Alexandrov, A. R. Bishop, K. O. Rasmussen, A. Usheva, “A nonlinear dynamic model of DNA with a sequence-dependent stacking term”, Nucleic Acids Research, 37 (2009), 2405–2410 | DOI

[20] B. S. Alexandrov, V. Gelev, S. W. Yoo, L. B. Alexandrov, Y. Fukuyo, A. R. Bishop, K. O. Rasmussen, A. Usheva, “DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation”, Nucleic Acids Research, 38 (2010), 1790–1795 | DOI | MR

[21] B. S. Alexandrov, V. I. Valtchinov, L. B. Alexandrov, V. Gelev, Y. Dagon, J. Bock, I. S. Kohane, K. O. Rasmussen, A. R. Bishop, A. Usheva, “DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases”, PLoS One, 6 (2011), 1–6 | DOI | MR

[22] M. R. Kantorovitz, Z. Rapti, V. Gelev, A. Usheva, “Computing DNA duplex instability profiles efficiently with a two-state model: trends of promoters and binding sites”, BMC Bioinformatics, 11:1 (2010), 604 | DOI

[23] A. Campa, A. Giansanti, “Melting of DNA oligomers: dynamical models and comparison with experimental results”, Journal of Biological Physics, 24 (1999), 141–155 | DOI