Technology of balanced identification for selection of pine transpiration mathematical model
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 665-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

The application of numerical technology for evaluation the correspondence of a mathematical model and experimental data via the balanced (optimization) identification method is demonstrated with comparing various models of pine transpiration. A quantitative measure of the model evaluation is the cross-validation error. Current implementation of the technology allow the researcher to formulate the computing task in a text file, which contains: mathematical model formulas (including differential and/or integration equations); declarations of parameters and/or functions to be identified; data source (with experimental measurements) and additional settings of the numerical method. As a result, the software package returns unknown parameters, functions, and modeling errors. This technology is successfully used to various models in biology, medicine, physics, etc.
@article{MBB_2019_14_2_a22,
     author = {A. V. Sokolov and V. K. Bolondinsky and V. V. Voloshinov},
     title = {Technology of balanced identification for selection of pine transpiration mathematical model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {665--682},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a22/}
}
TY  - JOUR
AU  - A. V. Sokolov
AU  - V. K. Bolondinsky
AU  - V. V. Voloshinov
TI  - Technology of balanced identification for selection of pine transpiration mathematical model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 665
EP  - 682
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a22/
LA  - ru
ID  - MBB_2019_14_2_a22
ER  - 
%0 Journal Article
%A A. V. Sokolov
%A V. K. Bolondinsky
%A V. V. Voloshinov
%T Technology of balanced identification for selection of pine transpiration mathematical model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 665-682
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a22/
%G ru
%F MBB_2019_14_2_a22
A. V. Sokolov; V. K. Bolondinsky; V. V. Voloshinov. Technology of balanced identification for selection of pine transpiration mathematical model. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 665-682. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a22/

[1] A. V. Sokolov, V. V. Voloshinov, “Vybor matematicheskoi modeli: balans mezhdu slozhnostyu i blizostyu k izmereniyam”, International Journal of Open Information Technologies, 6:9 (2018), 33–41 (data obrascheniya: 25.12.2019) http://injoit.org/index.php/j1/article/view/612

[2] A. Sokolov, V. Voloshinov, Balanced Identification as an Intersection of Optimization and Distributed Computing, 2019, arXiv: 1907.13444 [math.OC] | MR

[3] S. Smirnov, V. Voloshinov, O. Sukhosroslov, “Distributed Optimization on the Base of AMPL Modeling Language and Everest Platform”, Procedia Computer Science, 101 (2016), 313–322 | DOI

[4] O. Sukhoroslov, S. Volkov, A. Afanasiev, “A Web-Based Platform for Publication and Distributed Execution of Computing Applications”, Parallel and Distributed Computing, Proc. 14th International Symposium on IEEE (Cambridge, USA), 2015, 175–184

[5] A. N. Tikhonov, “O matematicheskikh metodakh avtomatizatsii obrabotki nablyudenii”, Problemy vychislitelnoi matematiki, Izd-vo MGU, M., 1980, 3–17

[6] B. Nicholson, J. D. Siirola, J. P. Watson, V. M. Zavala, L. T. Biegler, “pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations”, Mathematical Programming Computation, 10:2 (2018), 187–223 | DOI | MR

[7] J. Schoukens, L. Ljung, Nonlinear System Identification: A User-Oriented Roadmap, 2019, arXiv: 1902.00683 [cs.SY] | MR

[8] R. Clewley, “Hybrid models and biological model reduction with PyDSTool”, PLoS computational biology, 8:8 (2012) | DOI | MR

[9] J. L. Guzmán, D. E. Rrivera, S. Dormido, M. Berenguel, “ITSIE: An interactive software tool for system identification”, Adv. Eng. Softw., 45:1 (2012), 115–123 | DOI

[10] Ü. Niinemets, N. P. R. Anten, “Packing the photosynthetic machinery: from leaf to canopy”, Photosynthesis in silico Advances in Photosynthesis and Respiration, eds. A. Laisk, L. Nedbal, Govindjee, Springer, Netherlands, 2009, 363–399 | DOI

[11] A. V. Olchev, O. A. Deshcherevskaya, Yu. A. Kurbatova, A. G. Molchanov, E. Yu. Novenko, V. B. Pridacha, T. A. Sazonova, “CO$_2$ and H$_2$O exchange in the forest ecosystems of southern taiga under climate changes”, Doklady Biological Sciences, 450 (2013), 173–176 | DOI

[12] G. Wieser, M. Leo, W. Oberhuber, “Transpiration and canopy conductance in an inner alpine Scots pine (Pinus sylvestris L.) forest”, Flora, 209:9 (2014), 491–498 | DOI

[13] G. Wieser, A. Gruber, W. Oberhuber, “Growing season water balance of an inner alpine Scots pine (Pinus sylvestris L.) forest. I”, Forest, 11 (2018), 469–475 | DOI

[14] N. I. Kazimirov, A. D. Volkov, S. S. Zyabchenko, A. A. Ivanchikov, R. M. Morozova, Obmen veschestv i energii v sosnovykh lesakh Evropeiskogo Severa, Nauka, Leningrad, 1977, 304 pp.

[15] L. K. Kaibiyainen, “Ekologo-fiziologicheskie issledovaniya sosny i sosnovykh drevostoev”, Tr. KarNTs RAN, 2003, no. 5, 65–73

[16] B. M. Veselkov, “Avtomaticheskaya registratsiya transpiratsii u drevesnykh rastenii v estestvennykh usloviyakh s pomoschyu differentsialnogo psikhrometra”, Biofizicheskie metody issledovanii v ekofiziologii drevesnykh rastenii, Nauka, Leningr. otd-nie, 1979, 50–67

[17] B. M. Veselkov, P. V. Tikhov, “Svyaz transporta vody po ksileme s intensivnostyu transpiratsii u sosny obyknovennoi”, Fiziologiya rastenii, 31 (1984), 1099–1107

[18] J. Urban, M. W. Ingwers, M. A. McGuire, R. O. Teskey, “Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra”, Journal of Experimental Botany, 68:7 (2017), 1757–1767 | DOI

[19] J. Rodríguez-Gamir, J. Xue, M. J. Clearwater, D. F. Meason, P. W. Clinton, J. C. Domec, “Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiate under water stress”, Plant Cell Environ., 42 (2019), 717–729 | DOI

[20] D. A. Barri, U. D. S. Daunton, “Zavisimost fotosinteza ot faktorov okruzhayuschei sredy”, Fotosintez, v. 2, ed. Govindzhi, Mir, M., 1987, 273–364

[21] Psikhrometricheskie tablitsy, spravochnik, Gidrometeoizdat, L., 1972, 235 pp.

[22] E. Korpilahti, “Photosynthetic production of Scots pine in the natural environment”, Acta Forestalia Fennica, 202 (1988), 7649 | DOI