Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 635-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study is aimed at the analytical design of the full human bronchial tree for healthy patients and patients with obstructive pulmonary diseases. Analytical formulas for design of the full bronchial tree are derived. All surfaces of the bronchial tree are matched with the second-order smoothness (there are no acute angles or ribs). The geometric characteristics of the human bronchial tree in the pathological case are modeled by a “starry” shape of the inner structure of the bronchus; the pathology degree is defined by two parameters: bronchus constriction level and degree of distortion of the cylindrical shape of the bronchus. Closed analytical formulas allow the human bronchial tree of an arbitrary complexity (up to alveoli) to be designed; moreover, the parametric dependences make it possible to specify any desirable degree of airway obstruction.
@article{MBB_2019_14_2_a20,
     author = {A. E. Medvedev and P. S. Gafurova},
     title = {Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {635--648},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a20/}
}
TY  - JOUR
AU  - A. E. Medvedev
AU  - P. S. Gafurova
TI  - Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 635
EP  - 648
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a20/
LA  - en
ID  - MBB_2019_14_2_a20
ER  - 
%0 Journal Article
%A A. E. Medvedev
%A P. S. Gafurova
%T Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 635-648
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a20/
%G en
%F MBB_2019_14_2_a20
A. E. Medvedev; P. S. Gafurova. Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 635-648. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a20/

[1] E. R. Weibel, Morphometry of the Human Lung, Springer Verlag, Berlin, 1963 | DOI

[2] Y. Zhao, B. B. Lieber, “Steady inspiratory flow in a model symmetric bifurcation”, Journal of Biomechanical Engineering, 116 (1994), 488–496 | DOI

[3] Y. Zhao, C. T. Brunskill, B. B. Lieber, “Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway”, Journal of Biomechanical Engineering, 119 (1997), 52–58 | DOI

[4] C. J. Hegedüs, I. Balásházy, Á. Farkas, “Detailed mathematical description of the geometry of airway bifurcations”, Respiratory Physiology Neurobiology, 141:1 (2004), 99–114 | DOI

[5] T. Heistracher, W. Hofmann, “Physiologically realistic models of bronchial airway bifurcations”, J. Aerosol Sci., 26:3 (1995), 497–509 | DOI

[6] C. Ertbruggen, C. Hirsch, M. Paiva, “Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics”, J. Appl. Physiol., 98 (2005), 970–980 | DOI

[7] A. F. Tena, P. Casan, J. Fernández, C. Ferrera, A. Marcos, “Characterization of particle deposition in a lung model using an individual path”, EPJ Web of Conferences, 45 (2013), 01079 | DOI

[8] A. F. Tena, J. Fernández, E. lvarez, P. Casan, D. K. Walters, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, International Journal for Numerical Methods in Biomedical Engineering, 33:6 (2017), e2830 | DOI | MR

[9] A. F. Tena, J. F. Francos, E. Álvarez, P. A. Casan, “A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Engineering Applications of Computational Fluid Mechanics, 9:1 (2015), 187–198 | DOI

[10] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “CFD Simulation of Airflow in a 17-Generation Digital Reference Model of the Human Bronchial Tree”, Series on Biomechanics, 23:1 (2007), 5–18

[11] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “Computational model of airflow in upper 17 generations of human respiratory tract”, Journal of Biomechanics, 41 (2008), 2047–2054 | DOI

[12] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modeling of the human breathing process: conceptual and mathematical formulations”, Mathematical Biology and Bioinformatics, 11:1 (2016), 64–80 | DOI | MR

[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelling dusty air flow in the human respiratory tract”, Russian Journal of Biomechanics, 22:3 (2018), 262–274

[14] J. Choi, Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs, PhD Dissertation (Doctor of Philosophy), University of Iowa, Iowa, 2011, 259 pp. | DOI

[15] A. W. Ham, D. H. Cormack, Ham's Histology, Lippencott, Philadelphia, 1979

[16] A. L. Mescher, Junqueira's Basic Histology: Text and Atlas, McGraw Hill Medical, New York, 2013, 560 pp.

[17] A. L. Chernyaev, M. V. Samsonova, “Different types of chronic obstructive pulmonary disease in term of pathologist's view”, Russian Pulmonology, 2013, no. 3, 93–96 (in Russ.) | DOI

[18] V. N. Solopov, Asthma. How to be healthy again, 2002, 240 pp. (in Russ.) (accessed 18.12.2019) http://health.astma.ru/