Two types of oscillations of the Holstein polaron uniformly moving along a polynucleotide chain in a constant electric field
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 477-487.

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with the development of molecular nanobioelectronics, the main task of which is the construction of electronic devices based on biological molecules, the problems of charge transfer in such extended molecules as DNA are of increasing interest. The relevance of studying the charges motion in one-dimensional molecular chains is primarily associated with the possibility of using these chains as wires in nanoelectronic devices. Current carriers in one-dimensional chains are self-trapped electronic states, which have the form of polaron formations. In this paper we investigate the motion of the Holstein polaron in the process of its uniform motion along the chain in a constant electric field. It is known that during uniform motion along the chain in a weak electric field, the polaron experiences small oscillations of its shape. These oscillations are associated with the discreteness of the chain and are due to the presence of the Peierls–Nabarro potential in the discrete chain. Previous investigations have shown that for certain parameters of the chain, there is the possibility of uniform charge motion in a constant electric field over very large distances. The charge motion with a constant velocity is possible for small values of the electric field intensity. With an increase in the electric field intensity, the charge goes into an oscillatory regime of motion with Bloch oscillations. The calculations performed in this work showed that the elements of Bloch oscillations also appear during stationary motion of the polaron along the chain. Thus, it is shown that the Holstein polaron, uniformly moving along the chain in a constant electric field, experiences not only Peierls–Nabarro oscillations, but also low-amplitude oscillations with a Bloch period.
@article{MBB_2019_14_2_a13,
     author = {A. N. Korshounova and V. D. Lakhno},
     title = {Two types of oscillations of the {Holstein} polaron uniformly moving along a polynucleotide chain in a constant electric field},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {477--487},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a13/}
}
TY  - JOUR
AU  - A. N. Korshounova
AU  - V. D. Lakhno
TI  - Two types of oscillations of the Holstein polaron uniformly moving along a polynucleotide chain in a constant electric field
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 477
EP  - 487
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a13/
LA  - ru
ID  - MBB_2019_14_2_a13
ER  - 
%0 Journal Article
%A A. N. Korshounova
%A V. D. Lakhno
%T Two types of oscillations of the Holstein polaron uniformly moving along a polynucleotide chain in a constant electric field
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 477-487
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a13/
%G ru
%F MBB_2019_14_2_a13
A. N. Korshounova; V. D. Lakhno. Two types of oscillations of the Holstein polaron uniformly moving along a polynucleotide chain in a constant electric field. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 477-487. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a13/

[1] D. Hennig, E. B. Starikov, J. F.R. Archilla, F. Palmero, “Charge Transport in Poly(dG)-Poly(dC) and Poly(dA)-Poly(dT) DNA Polymers”, Journal of Biological Physics, 30:3 (2004), 227 | DOI

[2] A. S. Davydov, Solitons in Molecular systems, Reidel Publ. Comp., Boston, 1985, 413 pp. | MR | Zbl

[3] A. C. Scott, “Davydov's soliton”, Phys. Rep., 217:1 (1992), 1–67 | DOI

[4] P. J. De Pablo, F. Moreno-Herrero, J. Colchero, Herrero J. Gómez, P. Herrero, A. M. Baró, Ordejón Pablo, M. Soler José, Artacho Emilio, “Absence of dc-Conductivity in $\lambda$-DNA”, Phys. Rev. Lett., 85 (2000), 4992–4995 | DOI

[5] D. Porath, A. Bezryadin, S. De Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 | DOI

[6] K. H. Yoo, D. H. Ha, J. O. Lee, Par J. W.k, Kim Jinhee, J. J. Kim, H. Y. Lee, T. Kawai, Choi Han Yong, “Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules”, Phys. Rev. Lett., 87 (2001), 198102 | DOI

[7] A. Yu. Kasumov, M. Kociak, S. Guéron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-Induced Superconductivity in DNA”, Science, 291:5502 (2001), 280–282 | DOI

[8] M. W. Shinwari, M. J. Deen, E. B. Starikov, G. Cuniberti, “Electrical Conductance in Biological Molecules”, Advanced Functional Materials, 20:12 (2010), 1865–1883 | DOI

[9] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Teoreticheskie i eksperimentalnye issledovaniya otkrytykh sostoyanii DNK”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 553–664 | DOI | MR

[10] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 | DOI | MR

[11] E. B. Starikov, “Electron-phonon coupling in DNA: a systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 | DOI

[12] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “AC conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 | DOI

[13] S. Komineas, G. Kalosakas, A. R. Bishop, “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 | DOI

[14] A. D. Chepeliaskii, D. Klinov, A. Kasumov, S. Guéron, O. Pietrement, S. Lyonnais, H. Bouchiat, “Conduction of DNA molecules attached to a disconnected array of metallic Ga nanoparticles”, New J. Phys., 13 (2011), 063046 | DOI

[15] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 | DOI

[16] A. Offenhausser, R. Rinald (eds.), Nanobioelectronics for Electronics, Biology and Medicine, Springer-Verlag, N.-Y., 2009

[17] R. G. Eudres, D. L. Cox, R. R. P. Singh, “Colloquium: The quest for high-conductance DNA”, Rev. Mod. Phys., 76 (2004), 195–214 | DOI

[18] M. Taniguchi, T. Kawai, “DNA electronics”, Physica E, 33 (2006), 1–12 | DOI

[19] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 | DOI

[20] V. D. Lakhno, V. B. Sultanov, “On the Possibility of Electronic DNA Nanobiochips”, J. Chem. Theory Comput., 3 (2007), 703–705 | DOI

[21] E. M. Conwell, S. V. Rakhmanova, “Polarons in DNA”, Proc. Natl. Acad. Sci., 97 (2000), 4556–4560 | DOI

[22] P. Maniadis, G. Kalosakas, K. Rasmussen, A. R. Bishop, “Polaron normal modes in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 68 (2003), 174304 | DOI | MR

[23] V. D. Lakhno, A. N. Korshunova, “Formation of stationary electronic states in finite homogeneous molecular chains”, Math. Biol. Bioinf., 5 (2010), 1–29 | DOI

[24] T. Yu. Astakhova, G. A. Vinogradov, “Polyaron v elektricheskom pole i kolebatelnyi spektr poliatsetilena”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 150–159 | DOI | MR

[25] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133–147 | DOI

[26] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Phys, 8 (1959), 325–342 | DOI | Zbl

[27] T. Holstein, “Studies of polaron motion: Part II. The “small” polaron”, Annals of Phys., 8 (1959), 343–389 | DOI | Zbl

[28] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206 | DOI

[29] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B, 79 (2011), 147 | DOI

[30] A. N. Korshunova, V. D. Lakhno, “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 88:9 (2018), 1312–1319 | DOI

[31] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85 | DOI

[32] N. T. Bagraev, A. L. Chernev, L. E. Klyachkin, A. M. Malyarenko, A. K. Emelyanov, M. V. Dubina, “Teragertsevyi otklik oligonukleotidov DNK na poverkhnosti kremnievykh nanostruktur”, Fizika i tekhnika poluprovodnikov, 50:9 (2016), 1230–1237