Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a17, author = {Nisha Singh and Neeru Adlakha}, title = {Nonlinear dynamic modeling of 2-dimensional interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {290--305}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a17/} }
TY - JOUR AU - Nisha Singh AU - Neeru Adlakha TI - Nonlinear dynamic modeling of 2-dimensional interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 290 EP - 305 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a17/ LA - en ID - MBB_2019_14_1_a17 ER -
%0 Journal Article %A Nisha Singh %A Neeru Adlakha %T Nonlinear dynamic modeling of 2-dimensional interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 290-305 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a17/ %G en %F MBB_2019_14_1_a17
Nisha Singh; Neeru Adlakha. Nonlinear dynamic modeling of 2-dimensional interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 290-305. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a17/
[1] N. L. Allbritton, T. Meyer, L. Stryer, “Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate”, Science New York then Washington, 258 (1992), 1812–1812 | DOI
[2] M. J. Berridge, M. D. Bootman, P. Lipp, “Calcium-a life and death Signal”, Nature, 395:6703 (1998), 645 | DOI
[3] M. J. Berridge, “Elementary and global aspects of calcium signalling”, The Journal of Physiology, 499:2 (1997), 291–306 | DOI
[4] D. Swaminathan, Mathematical Modeling of Intracellular Calcium Signaling: A Study of IP$_3$ Receptor Models, Ohio University, 2010 | MR
[5] J. Sneyd, J. Sherratt, “On the propagation of calcium waves in an inhomogeneous medium”, SIAM Journal on Applied Mathematics, 57:1 (1997), 73–94 | DOI | MR | Zbl
[6] T. R. Shannon, F. Wang, J. Puglisi, C. Weber, D. M. Bers, “A mathematical treatment of integrated ca dynamics within the ventricular myocyte”, Biophysical Journal, 87:5 (2004), 3351–3371 | DOI | MR
[7] S. A. Goonasekera, K. Hammer, M. Auger-Messier, I. Bodi, X. Chen, H. Zhang, S. Reiken, J. W. Elrod, R. N. Correll, A. J. York et al., “Decreased cardiac l-type Ca$^{2+}$ channel activity induces hypertrophy and heart failure in mice”, The Journal of Clinical Investigation, 122:1 (2012), 280 | DOI
[8] G. Dupont, C. Erneux, “Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca$^{2+}$ oscillations”, Cell Calcium, 22:5 (1997), 321–331 | DOI
[9] A. P. Dawson, Calcium signalling: How do IP$_3$ receptors work?, Current Biology, 7:9 (1997), R544–R547 | DOI
[10] B. Ciapa, D. Pesando, M. Wilding, M. Whitaker, “Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels”, Nature, 368:6474 (1994), 875–878 | DOI
[11] G. Dupont, A. Goldbeter, “One-pool model for Ca$^{2+}$ oscillations involving Ca$^{2+}$ and inositol 1,4,5-trisphosphate as co-agonists for Ca$^{2+}$ release”, Cell Calcium, 14:4 (1993), 311–322 | DOI
[12] J. Sneyd, K. Tsaneva-Atanasova, V. Reznikov, Y. Bai, M. J. Sanderson, D. I. Yule, “A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations”, Proceedings of the National Academy of Sciences, 103:6 (2006), 1675–1680 | DOI | MR
[13] A. Politi, L. D. Gaspers, A. P. Thomas, T. Höfer, “Models of IP$_3$ and Ca$^{2+}$ oscillations: frequency encoding and identification of underlying feedbacks”, Biophysical Journal, 90:9 (2006), 3120–3133 | DOI
[14] T. J. Hund, A. P. Ziman, W. Lederer, P. J. Mohler, “The cardiac IP$_3$ receptor: Uncovering the role ofthe other- calcium release channel”, Journal of Molecular and Cellular Cardiology, 45:2 (2008), 159 | DOI
[15] J. Wagner, C. P. Fall, F. Hong, C. E. Sims, N. L. Allbritton, R. A. Fontanilla, I. I. Moraru, L. M. Loew, R. Nuccitelli, “A wave of IP$_3$ production accompanies the fertilization Ca$^{2+}$ wave in the egg of the frog, xenopus laevis: theoretical and experimental support”, Cell Calcium, 35:5 (2004), 433–447 | DOI
[16] P. Cao, M. Falcke, J. Sneyd, “Mapping interpuff interval distribution to the properties of inositol trisphosphate receptors”, Biophysical Journal, 112:10 (2017), 2138–2146 | DOI
[17] G. Handy, M. Taheri, J. A. White, A. Borisyuk, “Mathematical investigation of IP$_3$-dependent calcium dynamics in astrocytes”, Journal of Computational Neuroscience, 42:3 (2017), 257–273 | DOI | MR
[18] K. Pathak, N. Adlakha, “Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes”, Alexandria Journal of Medicine, 52:3 (2016), 261–268 | DOI | MR
[19] Y. Jagtap, N. Adlakha, “Simulation of buffered advection diffusion of calcium in a hepatocyte cell”, Mathematical Biology, 13:2 (2018), 609–619 | DOI | MR
[20] A. Jha, N. Adlakha, “Analytical solution of two dimensional unsteady state problem of calcium diffusion in a neuron cell”, Journal of Medical Imaging and Health Informatics, 4:4 (2014), 547–553 | DOI
[21] A. Jha, N. Adlakha, “Two-dimensional finite element model to study unsteady state Ca$^{2+}$ diffusion in neuron involving er, leak and serca”, International Journal of Biomathematics, 8:1 (2015), 1550002 | DOI | MR | Zbl
[22] B. K. Jha, N. Adlakha, M. Mehta, “Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer”, International Journal of Biomathematics, 7:3 (2014), 1450031 | DOI | MR | Zbl
[23] B. K. Jha, N. Adlakha, M. Mehta, “Two-dimensional finite element model to study calcium distribution in astrocytes in presence of vgcc and excess buffer”, International Journal of Modeling, Simulation, and Scientific Computing, 4:2 (2013), 1250030 | DOI | MR
[24] M. Kotwani, N. Adlakha, M. Mehta, “Numerical model to study calcium diffusion in fibroblasts cell for one dimensional unsteady state case”, Applied Mathematical Sciences, 6:102 (2012), 5063–5072 | Zbl
[25] M. Kotwani, N. Adlakha, “Modeling of endoplasmic reticulum and plasma membrane Ca$^{2+}$ uptake and release fluxes with excess buffer approximation (eba) in fibroblast cell”, International Journal of Computational Materials Science and Engineering, 6:1 (2017), 1750004 | DOI
[26] N. Manhas, J. Sneyd, K. Pardasani, “Modelling the transition from simple to complex Ca$^{2+}$ oscillationsinpancreaticacinarcells”, Journal of Biosciences, 39:3 (2014), 463–484 | DOI
[27] N. Manhas, K. Pardasani, “Modelling mechanism of calcium oscillations in pancreatic acinar cells”, Journal of Bioenergetics and Biomembranes, 46:5 (2014), 403–420 | DOI
[28] P. A. Naik, K. R. Pardasani, “Finite element model to study calcium distribution in oocytes involving voltage gated Ca$^{2+}$ channel, ryanodine receptor and buffers”, Alexandria Journal of Medicine, 52:1 (2016), 43–49 | DOI | MR
[29] A. Michailova, F. DelPrincipe, M. Egger, E. Niggli, “Spatiotemporal features of Ca$^{2+}$ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum”, Biophysical Journal, 83:6 (2002), 3134–3151 | DOI
[30] C. E. Adkins, C. W. Taylor, “Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca$^{2+}$”, Current biology, 9:19 (1999), 1115–1118 | DOI
[31] G. W. De Young, J. Keizer, “A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca$^{2+}$ concentration”, Proceedings of the National Academy of Sciences, 89:20 (1992), 9895–9899 | DOI
[32] B. D. Stewart, C. E. Scott, T. P. McCoy, G. Yin, F. Despa, S. Despa, P. M. Kekenes-Huskey, “Computational modeling of amylin-induced calcium dysregulation in rat ventricular cardiomyocytes”, Cell Calcium, 71 (2018), 65–74 | DOI
[33] J. Sneyd, “Calcium buffering and diffusion: on the resolution of an outstanding problem”, Biophysical Journal, 67:1 (1994), 4 | DOI
[34] J. Wagner, J. Keizer, “Effects of rapid buffers on Ca$^{2+}$ diffusion and Ca$^{2+}$ oscillations”, Biophysical Journal, 67:1 (1994), 447–456 | DOI
[35] S. A. Brown, F. Morgan, J. Watras, L. M. Loew, “Analysis of phosphatidylinositol-4, 5-bisphosphate signaling in cerebellar purkinje spines”, Biophysical Journal, 95:4 (2008), 1795–1812 | DOI
[36] C. C. Fink, B. Slepchenko, I. I. Moraru, J. Watras, J. C. Schaff, L. M. Loew, “An image-based model of calcium waves in differentiated neuroblastoma cells”, Biophysical Journal, 79:1 (2000), 163–183 | DOI
[37] K. B. Pathak, N. Adlakha, “Finite element model to study calcium signalling in cardiac myocytes involving pump, leak and excess buffer”, Journal of Medical Imaging and Health Informatics, 5:4 (2015), 683–688 | DOI | MR
[38] R. Malho, “Spatial characteristics to calcium signalling; the calcium wave as a basic unit in plant cell calcium signalling”, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353:1374 (1998), 1463–1473 | DOI
[39] L. A. Blatter, J. Kockskämper, K. A. Sheehan, A. V. Zima, J. Hüser, S. L. Lipsius, “Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes”, The Journal of Physiology, 546:1 (2003), 19–31 | DOI
[40] J. T. Maxwell, L. A. Blatter, “Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes”, The Journal of Physiology, 590:23 (2012), 6037–6045 | DOI
[41] L. Bezprozvanny, J. Watras, B. E. Ehrlich, “Bell-shaped calcium-response curves of Ins(1,4,5)P$_3$-and calcium-gated channels from endoplasmic reticulum of cerebellum”, Nature, 351:6329 (1991), 751–754 | DOI
[42] K. B. Pathak, N. Adlakha, “Finite element model to study one dimensional calcium dyanmics in cardiac myocytes”, Journal of Multiscale Modelling, 6:2 (2015), 1550003 | DOI | MR
[43] K. Hirose, S. Kadowaki, M. Tanabe, H. Takeshima, M. Iino, “Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca$^{2+}$ mobilization patterns”, Science, 284:5419 (1999), 1527–1530 | DOI
[44] A. Proven, H. L. Roderick, S. J. Conway, M. J. Berridge, J. K. Horton, S. J. Capper, M. D. Bootman, “Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes”, Journal of Cell Science, 119:16 (2006), 3363–3375 | DOI
[45] K. W. Young, M. S. Nash, R. J. Challiss, S. R. Nahorski, “Role of Ca$^{2+}$ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by g-protein-coupled receptors”, Journal of Biological Chemistry, 278:23 (2003), 20753–20760 | DOI
[46] K. Cuthbertson, T. Chay, “Modelling receptor-controlled intracellular calcium oscillators”, Cell Calcium, 12:2-3 (1991), 97–109 | DOI
[47] C. Hisatsune, K. Nakamura, Y. Kuroda, T. Nakamura, K. Mikoshiba, “Amplification of Ca$^{2+}$ signaling by diacylglycerol-mediated inositol 1,4,5-trisphosphate production”, Journal of Biological Chemistry, 280:12 (2005), 11723–11730 | DOI
[48] T. Meyer, L. Stryer, “Molecular model for receptor-stimulated calcium spiking”, Proceedings of the National Academy of Sciences, 85:14 (1988), 5051–5055 | DOI
[49] U. Kummer, L. F. Olsen, C. J. Dixon, A. K. Green, E. Bornberg-Bauer, G. Baier, “Switching from simple to complex oscillations in calcium signaling”, Biophysical Journal, 79:3 (2000), 1188–1195 | DOI
[50] I. Kehat, J. D. Molkentin, “Molecular pathways underlying cardiac remodeling during pathophysiological stimulation”, Circulation, 122:25 (2010), 2727–2735 | DOI
[51] P. A. Gorski, D. K. Ceholski, R. J. Hajjar, “Altered myocardial calcium cycling and energetics in heart failure-a rational approach for disease treatment”, Cell Metabolism, 21:2 (2015), 183–194 | DOI