Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_2_a13, author = {P. V. Trusov and N. V. Zaitseva and V. M. Chigvintsev and D. V. Lanin}, title = {Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {402--425}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a13/} }
TY - JOUR AU - P. V. Trusov AU - N. V. Zaitseva AU - V. M. Chigvintsev AU - D. V. Lanin TI - Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 402 EP - 425 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a13/ LA - ru ID - MBB_2018_13_2_a13 ER -
%0 Journal Article %A P. V. Trusov %A N. V. Zaitseva %A V. M. Chigvintsev %A D. V. Lanin %T Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 402-425 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a13/ %G ru %F MBB_2018_13_2_a13
P. V. Trusov; N. V. Zaitseva; V. M. Chigvintsev; D. V. Lanin. Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 402-425. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a13/
[1] C. J. Heijnen, “Receptor regulation in neuroendocrine-immune communication: current knowledge and future perspectives”, Brain, behavior, and immunity, 21 (2007), 1–8 | DOI
[2] T. W. Pace, L. T. Negi, D. D. Adame, S. P. Cole, T. I. Sivilli, T. D. Brown, M. J. Issa, C. L. Raison, “Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress”, Psychoneuroendocrinology, 34 (2009), 87–98 | DOI
[3] N. T. Ashley, G. E. Demas, “Neuroendocrine-immune circuits, phenotypes, and interactions”, Hormones and Behavior, 87 (2017), 25–34 | DOI
[4] E. C. Suarez, J. S. Sundy, A. Erkanli, “Depressogenic vulnerability and gender-specific patterns of neuro-immune dysregulation: What the ratio of cortisol to C-reactive protein can tell us about loss of normal regulatory control”, Brain, Behavior, and Immunity, 44 (2015), 137–147 | DOI
[5] D. V. Lanin, N. V. Zaitseva, O. V. Dolgikh, “Neiroendokrinnye mekhanizmy regulyatsii funktsii immunnoi sistemy”, Uspekhi sovremennoi biologii, 2 (2011), 122–134
[6] M. Bellavance, S. Rivest, “The neuroendocrine control of the innate immune system in health and brain diseases”, Immunological Reviews, 248 (2012), 36–55 | DOI
[7] C. R. Chapman, R. P. Tuckett, C. W. Song, “Pain and Stress in a Systems Perspective: Reciprocal Neural, Endocrine, and Immune Interactions”, Journal of Pain, 9 (2008), 122–145 | DOI
[8] S. Miyake, Mind over cytokines: Crosstalk and regulation between the neuroendocrine and immune systems, 3:1 (2012), 1–15 | DOI
[9] A. B. Poletaev, S. G. Morozov, I. E. Kovalev, Regulyatornaya metasistema (immunoneiroendokrinnaya regulyatsiya gomeostaza), Meditsina, M., 2002, 166 pp.
[10] World health statistics 2016: monitoring health for the SDGs, sustainable development goals, World Health Organization, 2016, 121 pp.
[11] L. A. Stepanenko, S. V. Ilina, E. D. Savilov, “Osobennosti sostoyaniya spetsificheskogo immuniteta k upravlyaemym infektsiyam u detei (na primere kori i poliomielita) v usloviyakh vozdeistviya tekhnogennoi nagruzki”, Byulleten Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk, 2007, S3, 66–68
[12] Statisticheskie materialy, , Federalnaya sluzhba po nadzoru v sfere zaschity prav potrebitelei i blagopoluchiya cheloveka, 2018 (data obrascheniya: 20.11.2018) http://rospotrebnadzor.ru/activities/statistical-materials
[13] E. D. Savilov, M. V. Maltsev, “Epidemiologicheskaya kharakteristika virusnogo gepatita S v usloviyakh krupnogo promyshlennogo goroda”, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2007, no. 1, 70–71
[14] E. E. Voronin, I. B. Latysheva, “VICh-infektsiya v Rossiiskoi Federatsii”, Uralskii meditsinskii zhurnal, 142 (2016), 6–8
[15] L. A. Stepanenko, M. F. Savchenkov, S. V. Ilina, E. V. Anganova, E. D. Savilov, “Otsenka sostoyaniya immunnoi sistemy detskogo naseleniya kak markera tekhnogennogo zagryazneniya okruzhayuschei sredy”, Gigiena i sanitariya, 95 (2016), 1129–1133
[16] E. D. Savilov, E. V. Anganova, S. V. Ilina, L. A. Stepanenko, “Tekhnogennoe zagryaznenie okruzhayuschei sredy i zdorove naseleniya: analiz situatsii i prognoz”, Gigiena i sanitariya, 95 (2016), 507–512
[17] E. D. Savilov, S. V. Ilina, “Osobennosti infektsionnoi patologii detskogo naseleniya v usloviyakh tekhnogennogo zagryazneniya okruzhayuschei sredy”, Epidemiologiya i vaktsinoprofilaktika, 62 (2012), 58–63
[18] N. V. Zaitseva, D. V. Lanin, V. A. Chereshnev, Immunnaya i neiroendokrinnaya regulyatsiya v usloviyakh vozdeistviya khimicheskikh faktorov razlichnogo geneza, Izdatelstvo Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta, Perm, 2016, 236 pp.
[19] D. V. Lanin, “Analiz koregulyatsii immunnoi i neiroendokrinnoi sistem v usloviyakh vozdeistviya faktorov riska”, Analiz riska zdorovyu, 1 (2013), 73–81 | DOI | MR
[20] N. V. Zaitseva, D. A. Kiryanov, D. V. Lanin, V. M. Chigvintsev, “A mathematical model of the immune and neuroendocrine systems mutual regulation under the technogenic chemical factors impact”, Computational and Mathematical Methods in Medicine, 2014 (2014) | DOI | MR
[21] N. V. Zaitseva, P. V. Trusov, P. Z. Shur, D. A. Kiryanov, V. M. Chigvintsev, M. Yu. Tsinker, “Metodicheskie podkhody k otsenke riska vozdeistviya raznorodnykh faktorov sredy obitaniya na zdorove naseleniya na osnove evolyutsionnykh modelei”, Analiz riska zdorovyu, 2013, no. 1, 3–11 | DOI | MR | Zbl
[22] N. V. Zaitseva, P. Z. Shur, I. V. Mai, D. A. Kiryanov, “Metodicheskie podkhody k otsenke integralnogo riska zdorovyu naseleniya na osnove evolyutsionnykh matematicheskikh modelei”, Zdorove naseleniya i sreda obitaniya, 2011, no. 10, 6–9
[23] D. V. Lanin, T. M. Lebedeva, “Vozdeistvie khimicheskikh faktorov sredy obitaniya na funktsii i vzaimosvyazi regulyatornykh sistem u detei”, Gigiena i sanitariya, 95 (2016), 94–96
[24] P. Zabel, H. J. Horst, C. Kreiker, M. Schlaak, “Circadian rhythm of interleukin-1 production of monocytes and the influence of endogenous and exogenous glucocorticoids in man”, Klinische Wochenschrift, 68 (1990), 1217–1221 | DOI
[25] N. Bairagi, S. Chatterjee, J. Chattopadhyay, “Variability in the secretion of corticotropinreleasing hormone, adrenocorticotropic hormone and cortisol and understandability of the hypothalamic-pituitary-adrenal axis dynamics - a mathematical study based on clinical evidence”, Mathematical Medicine and Biology, 25 (2008), 37–63 | DOI | Zbl
[26] Y. Kerdiles, S. Ugolini, E. Vivier, “T cell regulation of natural killer cells”, The Journal of Experimental Medicine, 210 (2013), 1065–1068 | DOI
[27] M. E. Andrew, A. M. Churilla, T. R. Malek, V. L. Braciale, T. J. Braciale, “Activation of virus specific CTL clones: antigen-dependent regulation of interleukin 2 receptor expression”, J. Immunol., 134:2 (1985), 920–925
[28] A. Muraguchi, J. H. Kehrl, D. L. Longo, D. J. Volkman, K. A. Smith, A. S. Fauci, “Interleukin 2 receptors on human B cells. Implications for the role of interleukin 2 in human B cell function”, The Journal of Experimental Medicine., 161 (1985), 181–197 | DOI
[29] E. Haus, M. H. Smolensky, “Biologic rhythms in the immune system”, Chronobiology International, 16 (1999), 581–622 | DOI
[30] G. E. Demas, S. A. Adamo, S. S. French, “Neuroendocrine-immune crosstalk in vertebrates and invertebrates: Implications for host defence”, Functional Ecology, 25 (2011), 29–39 | DOI
[31] G. I. Marchuk, R. V. Petrov, A. A. Romanyukha, G. A. Bocharov, “Mathematical model of antiviral immune response. I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B”, Journal of Theoretical Biology, 151 (1991), 1–40 | DOI
[32] I. Julkunen, K. Melen, M. Nyqvist, J. Pirhonen, T. Sareneva, S. Matikainen, “Inflammatory responses in influenza A virus infection”, Vaccine, 19, S32–S37 | DOI
[33] G. A. Bocharov, A. A. Romanyukha, “Mathematical model of antiviral immune response. III. Influenza A virus infection”, Journal of Theoretical Biology, 167:4 (1994), 323–360 | DOI
[34] K. P. Keenan, J. W. Combs, E. M. McDowell, “Regeneration of hamster tracheal epithelium after mechanical injury. III. Large and small lesions: Comparative stathmokinetic and single pulse and continuous thymidine labeling autoradiographic studies”, Virchows Archiv B Cell Pathology Including Molecular Pathology, 41:1 (1983), 231–252 | DOI
[35] W. K. Joklik, Interferons, ed. B. N. Fields, Raven Press, New York, 1985, 281–307
[36] A. S. Perelson, R. M. Ribeiro, “Modeling the within-host dynamics of HIV infection”, BMC Biology, 11 (2013), 96 | DOI
[37] A. M. Smith, A. S. Perelson, “Influenza A virus infection kinetics: Quantitative data and models”, WIREs: Systems Biology and Medicine, 3:4 (2011), 429–445 | DOI | MR
[38] F. Vinther, M. Andersen, J. T. Ottesen, “The minimal model of the hypothalamicpituitary-adrenal axis”, Journal of Mathematical Biology, 63:4 (2011), 663–690 | DOI | MR | Zbl
[39] V. M. Zhdanov, A. G. Bukrinskaya, Reproduktsiya miksovirusov (virusov grippa i skhodnykh s nimi), Meditsina, M., 1969, 280 pp.
[40] T. Ronni, T. Sareneva, J. Pirhonen, I. Julkunen, “Activation of IFN-alpha, IFN-gamma, MxA, and IFN regulatory factor 1 genes in influenza A virus-infected human peripheral blood mononuclear cells”, Journal of Immunology, 154:6 (1995), 2764–2774
[41] T. Sareneva, S. Matikainen, M. Kurimoto, I. Julkunen, “Influenza A virus-induced IFNalpha/beta and IL-18 synergistically enhance IFN-gamma gene expression in human T cells”, Journal of Immunology, 160:12 (1998), 6032–6038
[42] G. I. Marchuk, E. P. Berbentsova, Ostrye pnevmonii. Immunologiya, otsenka tyazhesti, klinika, lechenie, Nauka, M., 1989, 304 pp.
[43] F. G. Hayden, R. Fritz, M. C. Lobo, W. Alvord, W. Strober, S. E. Straus, “Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense”, Journal of Clinical Investigation, 101:3 (1998), 643–649 | DOI
[44] C. Wohlfartt, “Neutralization of Adenoviruses: Kinetics, Stoichiometry, and Mechanisms”, J. Immunol., 62:7 (1988), 2321–2328
[45] Y. Bergeron, N. Ouellet, A. Deslauriers, M. Simard, M. Olivier, M. Bergeron, “Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice”, Infect. Immun., 66:3 (1998), 912–922
[46] C. Gloff, R. Wills, “Pharmacokinetics and Metabolism of Therapeutic Cytokines”, Protein Pharmacokinetics and Metabolism, eds. B. Ferraiolo, M. Mohler, C. Gloff, Plenum Press, New York, 1992, 127–150 | DOI
[47] A. Tulp, D. Verwoerd, B. Dobberstein, H. L. Ploegh, J. Pieters, “Isolation and characterization of the intracellular MHC class II compartment”, Nature, 369:6476 (1994), 120–126 | DOI
[48] S. I. Tamura, T. Iwasaki, A. H. Thompson, H. Asanuma, Z. Chen, Y. Suzuki, C. Aizawa, T. Kurata, “Antibody-forming cells in the nasal-associated lymphoid tissue during primary influenza virus infection”, Journal of General Virology, 79:2 (1998), 291–299 | DOI | MR
[49] P. Felig, L. Frohman, Endocrinology, metabolism, McGraw-Hill, New York, 2001, 1562 pp.
[50] B. J. Carroll, F. Cassidy, D. Naftolowitz, N. E. Tatham, W. H. Wilson, A. Iranmanesh, P. Y. Liu, J. D. Veldhuis, “Pathophysiology of hypercortisolism in depression”, Acta Psychiatrica Scandinavica, 115, 2007–103 | DOI
[51] R. A. Yetter, S. Lehrer, R. Ramphal, P. A. Small Jr., “Outcome of influenza infection: effect of site of initial infection and heterotypic immunity”, Infect. Immun., 29 (1980), 654–662
[52] B. Asquith, C. R. Bangham, “An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis”, Proc. Biol. Sci., 270 (2003), 1651–1657 | DOI