Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_1_a4, author = {A. P. Chetverikov and K. S. Sergeev and V. D. Lakhno}, title = {Trapping and transport of charges in {DNA} by mobile discrete breathers}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {1--12}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a4/} }
TY - JOUR AU - A. P. Chetverikov AU - K. S. Sergeev AU - V. D. Lakhno TI - Trapping and transport of charges in DNA by mobile discrete breathers JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 1 EP - 12 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a4/ LA - ru ID - MBB_2018_13_1_a4 ER -
%0 Journal Article %A A. P. Chetverikov %A K. S. Sergeev %A V. D. Lakhno %T Trapping and transport of charges in DNA by mobile discrete breathers %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 1-12 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a4/ %G ru %F MBB_2018_13_1_a4
A. P. Chetverikov; K. S. Sergeev; V. D. Lakhno. Trapping and transport of charges in DNA by mobile discrete breathers. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a4/
[1] Shigaev A. S., Ponomarev O. A., Lakhno V. D., Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 553–664 | DOI
[2] Lakhno V. D., Int. Quant. Chem., 108 (2008), 1970 | DOI
[3] Offenhausser A., Rinaldi R. (eds.), Nanobioelectronics — for Electronics, Biology and Medicine, Springer, New York, 2009, 337 pp.
[4] Lakhno V. D., Sultanov V. B., Int. J. Quant. Chem., 108 (2008), 1913 | DOI
[5] Lakhno V. D., J. Biol. Phys., 26 (2000), 133 | DOI
[6] Fialko N. S., Lakhno V. D., Phys. Lett. A, 278 (2000), 108 | DOI
[7] Conwell E. M., Rakhmanova S. V., PNAS, 97 (2000), 4556 | DOI
[8] Lakhno V. D., Korshunova A. N., Mathematical Biology and Bioinformatics, 5 (2010), 1 | DOI | MR
[9] Lakhno V. D., Fialko N. S., Glass. Phys. Chemistry, 37 (2011), 51 | DOI
[10] Lakhno V. D., Fialko N. S., Russian J. Phys. Chem. A, 86 (2012), 832 | DOI
[11] Lakhno V. D., Chetverikov A. P., Matematicheskaya biologiya i bioinformatika, 9:1 (2014), 4–19 | DOI
[12] Chetverikov A. P., Ebeling W., Lakhno V. D., Shigaev A. S., Velarde M. G., Eur. Phys. J. B, 89 (2016), 101 | DOI
[13] Velarde M. G., Chetverikov A. P., Ebeling W., Dmitriev S. V., Lakhno V. D., Eur. Phys. J. B, 89 (2016), 233 | DOI | MR
[14] Yakushevich L. I., Nonlinear Physics of DNA, Wiley Series in Nonlinear Science, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, 2005
[15] Cheng D., Aubry S., Tsironis G. P., PRB, 77 (1996), 4776 | MR
[16] Aubry S., Cretegny T., Physica D: Nonlinear Phenomena, 119:1 (1998), 34 | DOI | MR | Zbl
[17] Cuevas J., Starikov E. B., Archilla J. F. R., Hennig D., Mod. Phys. Lett. B, 2011 | DOI
[18] Fakhretdinov M. I., Zakiryanov F. K., ZhTF, 83 (2013), 1–5
[19] Dauxois T., Peyrard M., Bishop A. R., Phys. Rev. E, 47 (1993), 2755–2758 | DOI
[20] Chetverikov A. P., Sergeev K. S., Lakhno V. D., Matematicheskaya biologiya i bioinformatika, 12:2 (2017), 375–384 | DOI
[21] Chetverikov A. P., Ebeling W., Velarde M. G., Eur. Phys. J. B, 51 (2006), 87–99 | DOI
[22] Holstein T., Ann. Phys., 8 (1959), 343 | DOI | Zbl
[23] Li G., Govind N., Ratner M. A., Cramer C. J., Gagliardi L., J. of Physical Chemistry Letters, 6 (2015), 4889–4897 | DOI
[24] Yoo-Konga S., Liewriana W., Eur. Phys. J. E, 2015, 1–14
[25] Xiang L., Palma J. L., Bruot C., Mujica V., Ratner M. A., Tao N., Nature Chemistry, 2015, 221–226 | DOI
[26] Zhang Y., Zhu W.-H., Ding G.-H., Dong B., Wang X. F., Nanotechnology, 2015, 1–14
[27] De Moura F. A. B. F., Lyra M. L., de Almeida M. L., Ourique G. S., Fulco U. L., Albuquerque E. L., Physics Letters A, 380:42 (2016), 3559–3563 | DOI
[28] Artes J. M., Li Y., Qi J., Anantram M. P., Hihath J., Nature Communications, 2015, 1–8 | DOI
[29] Xiang L., Palma J. L., Li Y., Mujica V., Ratner M. A., Tao N., Nature Communications, 2017, 1–10 | DOI
[30] Wolter M., Elstner M., Kubar T., Chem. Phys., 139 (2013), 125102 | DOI
[31] Behnia S., Fathizadeh S., Akhshani A., J. Phys. Chem. C, 120 (2016), 2973–2983 | DOI
[32] De Almeida M. L., Ourique G. S., Fulco U. L., Albuquerque E. L., de Moura F. A. B. F., Lyra M. L., Chemical Physics, 2016, 1–10 | DOI
[33] Gu L., Fu H. H., New J. Phys., 18 (2016), 053032 | DOI
[34] Li Y., Artes J. M., Qi J., Morelan I. A., Feldstein P., Anantram M. P., Hihath J., J. Phys. Chem. Lett., 7:10 (2016), 1888–1894 | DOI
[35] Zhu X., Liu S., Cao J., Mao X., Li G., Scientific Reports, 2016, 9 pp. | DOI
[36] Liu C., Xiang L., Zhang Y., Zhang P., Beratan D. N., Y. Li, Tao N., Nature Chemistry, 8 (2016), 941–945 | DOI
[37] Arnold A. R., Grodick M. A., Barton J. K., Cell Chemical Biology, 23 (2016), 183–197 | DOI
[38] Shigaev A. S., Ponomarev O. A., Lakhno V. D., Chemical Physics Letters, 513 (2011), 276–279 | DOI