Comparative analysis of methods for estimation of undirected coupling from time series of intracranial EEGs of cortex of rats-genetic models of absence epilepsy
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 317-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

Studying coupling between brain areas from its electromagnetic activity is one of the key approaches in epilepsy research now, since epileptic activity has been considered to be a result of pathological synchronization in the brain. Often, research is conducted on animal models, because this allows to perform intracranial measurement, and to get rid of interference caused by the skull and to receive signals from deeper regions of the brain such as thalamus or hippocampus. In this study, the intracranial recordings from the frontal and parietal areas of cortex are investigated with a nonlinear correlation coefficient and a mutual information function in a sliding time window. The coupling estimates obtained were subjected for statistical analysis for significance using surrogate data. The dynamics of connectivity between the frontal cortex and the parietal cortex was shown to vary from seizure to seizure and from animal to animal. Therefore, estimates of the significant change in connectivity associated with initiation of the absense seizure, found previously based on averaging over a large number of animals and a large number of seizures for an each animal, can be a result of contribution of a relatively small number of seizures (less than a half of considered), for which the changes are significant.
@article{MBB_2017_12_2_a20,
     author = {A. A. Grishchenko and C. M. van Rijn and I. V. Sysoev},
     title = {Comparative analysis of methods for estimation of undirected coupling from time series of intracranial {EEGs} of cortex of rats-genetic models of absence epilepsy},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {317--326},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a20/}
}
TY  - JOUR
AU  - A. A. Grishchenko
AU  - C. M. van Rijn
AU  - I. V. Sysoev
TI  - Comparative analysis of methods for estimation of undirected coupling from time series of intracranial EEGs of cortex of rats-genetic models of absence epilepsy
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 317
EP  - 326
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a20/
LA  - ru
ID  - MBB_2017_12_2_a20
ER  - 
%0 Journal Article
%A A. A. Grishchenko
%A C. M. van Rijn
%A I. V. Sysoev
%T Comparative analysis of methods for estimation of undirected coupling from time series of intracranial EEGs of cortex of rats-genetic models of absence epilepsy
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 317-326
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a20/
%G ru
%F MBB_2017_12_2_a20
A. A. Grishchenko; C. M. van Rijn; I. V. Sysoev. Comparative analysis of methods for estimation of undirected coupling from time series of intracranial EEGs of cortex of rats-genetic models of absence epilepsy. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 317-326. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a20/

[1] Megiddo I., Colson A., Chisholm D., Dua T., Nandi A., Laxminarayan R., “Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model”, Epilepsia, 57:3 (2016), 464–474 | DOI

[2] Volnova A. B., Lenkov D. N., “Absansnaya epilepsiya: mekhanizmy gipersinkhronizatsii neironnykh ansamblei”, Meditsinskii akademicheskii zhurnal, 12:1 (2012), 7–19

[3] Holmes G. L., McKeever M., Adamson M., “Absence seizures in children: Clinical and electroencephalographic features”, Annals of Neurology, 21:3 (1987), 268–273 | DOI

[4] Bosnyakova D., Gabova A., Zharikova A., Gnezditski V., Kuznetsova G., van Luijtelaar G., “Some peculiarities of time-frequency dynamics of spike-wave discharges in humans and rats”, Clinical Neurophysiology, 118:8 (2007), 1736–1743 | DOI

[5] Meeren H., van Luijtelaar G., Lopes da Silva F., Coenen A., “Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory”, Arch. Neurol., 62:3 (2005), 371–376 | DOI

[6] Coenen A. M. L., van Luijtelaar E. L. J. M., “Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats”, Behav. Genetics, 33 (2003), 635–655 | DOI

[7] Karlov V. A., Gnezditskii V. V., Absansnaya epilepsiya u detei i vzroslykh, Presservis, M., 2005

[8] Gourevitch B., Le Bouquin-Jeannes R., Faucon G., “Linear and nonlinear causality between signals: methods, examples and neurophysiological applications”, Biological Cybernetics, 95:4 (2006), 349–369 | DOI | MR

[9] Sysoeva M. V., Sitnikova E., Sysoev I. V., Bezruchko B. P., van Luijtelaar G., “Application of adaptive nonlinear Granger causality: Disclosing network changes before and after absence seizure onset in a genetic rat model”, J. Neurosci Methods, 226 (2014), 33–41 | DOI

[10] Hesse W., Möller E., Arnold M., Schack B., “The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies”, Journal of Neuroscience Methods, 124 (2003), 27–44 | DOI

[11] Baccala L. A., Sameshima K., Ballester G., Do Valle A. C., Timo-Iaria C., “Studying the Interaction Between Brain Structures via Directed Coherence and Granger Causality”, Applied Signal Processing, 5:1 (1998), 40–48 | DOI

[12] Schelter B., Timmer J., Eichler M., “Assessing the strength of directed influences among neural signals using renormalized partial directed coherence”, J. Neuroscience Methods, 179 (2009), 121–130 | DOI

[13] Luttjohann A., van Luijtelaar G., “The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy”, Neurobiology of Disease, 47 (2012), 47–60 | DOI

[14] Sysoeva M. V., Luttjohann A., van Luijtelaar G., Sysoev I. V., “Dynamics of directional coupling underlying spike-wave discharges”, Neuroscience, 314 (2016), 75–89 | DOI

[15] van Rijn C. M., Gaetani S., Santolini I., Badura A., Gabova A., Fu J., Watanabe M., Cuomo V., van Luijtelaar G., Nicoletti F., Ngomba R. T., “WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212–2, with a reduced incidence of spike-wave discharges”, Epilepsia, 51:8 (2010), 1511–1521 | DOI

[16] Sysoeva M. V., Vinogradova L. V., Kuznetsova G. D., Sysoev I. V., van Rijn C. M., “Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality”, Epilepsy Behavior, 64 (2016), 44–50 | DOI

[17] Paxinos G., Watson C., The rat brain in stereotaxc coordinates, Academic Press, San Diego, 2006

[18] Pijn J. P. M., Vijn P. C. M., Da Silva F. L., Boas W. V. E., Blanes W., “Localization of epileptogenic foci using a new signal analytical approach”, Neurophysiologie Clinique/Clinical Neurophysiology, 20:1 (1990), 1–11 | DOI

[19] Rajendra Acharya U., Oliver Faust, Kannathal N., TjiLeng Chua, Swamy Laxminarayan, “Non-linear analysis of EEG signals at various sleep stages”, Computer Methods and Programs in Biomedicine, 80:1 (2005), 37–45 | DOI

[20] Kraskov A., Stögbauer H., Grassberger P., “Estimating mutual information”, Phys. Rev. E, 69 (2004), 066–138 | DOI | MR

[21] Sysoev I. V., “Sravnenie chislennykh realizatsii algoritma rascheta vzaimnoi informatsii na osnove ucheta blizhaishikh sosedei”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 24:4 (2016), 86–95

[22] Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J. D., “Testing for nonlinearity in time series: the method of surrogate data”, Physica D, 58 (1992), 77–94 | DOI

[23] Sysoev I. V., Sysoeva M. V., “Detecting changes in coupling with Granger causality method from time series with fast transient processes”, Physica D, 309 (2015), 9–19 | DOI

[24] Meeren H. K., Pijn J. P., van Luijtelaar E. L., Coenen A. M., Lopes da Silva F. H., “Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats”, Journal of Neuroscience, 22 (2002), 1480–1495