Fractional-stable statistics of the genes expression in the next generation sequence results
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 278-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

As has been shown in the previous article [1] an application of class of the fractional-stable laws to the genes expression results obtained by DNA-microarrays leads to poor agreement between experimental and theoretical distributions. This difference can be explained by the imperfection of the technology of the gene expression determination. In this article the distributions of the gene expression obtained by Next Generation Sequence technology are investigated. In this technology the determination technique of the gene expression differs from the DNA-microarrays technology. This results to more qualitative results of an approximation. In particular, it is established that the probability density function of the gene expression has a form of shift-scale mixture of probability laws, where one of the components of the mixture is the fractional-stable distribution.
@article{MBB_2016_11_2_a4,
     author = {V. V. Saenko},
     title = {Fractional-stable statistics of the genes expression in the next generation sequence results},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {278--287},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a4/}
}
TY  - JOUR
AU  - V. V. Saenko
TI  - Fractional-stable statistics of the genes expression in the next generation sequence results
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 278
EP  - 287
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a4/
LA  - en
ID  - MBB_2016_11_2_a4
ER  - 
%0 Journal Article
%A V. V. Saenko
%T Fractional-stable statistics of the genes expression in the next generation sequence results
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 278-287
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a4/
%G en
%F MBB_2016_11_2_a4
V. V. Saenko. Fractional-stable statistics of the genes expression in the next generation sequence results. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a4/

[1] Saenko V., Saenko Yu., “Application of the fractional stable distributions for approximation of gene expression profiles”, Statistical Applications in Genetics and Molecular Biology, 14:3 (2015), 295–306 | DOI | MR | Zbl

[2] Knudsen S., Guide to Analysis of DNA Microarray Data, John Wiley Sons, Inc., Hoboken, NJ, USA, 2004 | DOI

[3] McLachlan G. J., Do K.-A., Ambroise C., Analyzing Microarray Gene Expression Data, Wiley Series in Probability and Statistics, John Wiley Sons, Inc., Hoboken, NJ, USA, 2004 | DOI | Zbl

[4] Goodwin S., McPherson J. D., McCombie W. R., “Comingofage: ten years of next-generation sequencing technologies”, Nature Reviews Genetics, 17:6 (2016), 333–351 | DOI

[5] Metzker M. L., “Sequencing technologies — the next generation”, Nature reviews. Genetics, 11:1 (2010), 31–46 | DOI

[6] Ozsolak F., Milos P. M., “RNA sequencing: advances, challenges and opportunities”, Nature reviews. Genetics, 12:2 (2011), 87–98 | DOI

[7] Ansorge W. J., “Next-generation DNA sequencing techniques”, New Biotechnology, 25:4 (2009), 195–203 | DOI

[8] Wang Z., Gerstein M., Snyder M., “RNA-Seq: a revolutionary tool for transcriptomics”, Nature reviews. Genetics, 10:1 (2009), 57–63 | DOI

[9] Ueda H. R., Hayashi S., Matsuyama S., Yomo T., Hashimoto S., Kay S. A., Hogenesch J. B., Iino M., “Universality and flexibility in gene expression from bacteria to human”, Proceedings of the National Academy of Sciences, 101:11 (2004), 3765–3769 | DOI

[10] Liebovitch L. S., Jirsa V. K., Shehadeh L. A., “Structure of genetic regulatory networks: evidence for scale free networks”, Complexus Mundi Emergent Patterns in Nature, ed. Novak M. M., World Scientific Publishing Co. Pte. Ltd., Singapore, 2006, 1–8 | DOI | MR | Zbl

[11] Lu Ch., King R. D., “An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems”, Bioinformatics (Oxford, England), 25:16 (2009), 2020–2027 | DOI

[12] Furusawa Ch., Kaneko K., “Zipf'sLaw inGeneExpression”, Physical Review Letters, 90:8 (2003), 8–11 | DOI

[13] Hoyle D. C., Rattray M., Jupp R., Brass A., “Making sense of microarray data distributions”, Bioinformatics, 18:4 (2002), 576–584 | DOI

[14] Kuznetsov V. A., Knott G. D., Bonner R. F., “General statistics of stochastic process of gene expression in eukaryotic cells”, Genetics, 161:3 (2002), 1321–1332

[15] Bening V. E., Korolev V. Yu., Sukhorukova T. A., Gusarov G. G., Saenko V. E., Uchaikin V. V., Kolokoltsov V. N., “Fractionally stable distributions”, Stochastic Models of Structural Plasma Turbulence, eds. Korolev V. Yu., Skvortsova N. N., Brill Academic Publishers, Utrecht, 2006, 175–244 | DOI | MR

[16] Kotulski M., “Asymptotic distributions of continuous-time random walks: A probabilistic approach”, Journal of Statistical Physics, 81:3–4 (1995), 777–792 | DOI | Zbl

[17] Kolokoltsov V. N., Korolev V. Yu., Uchaikin V. V., “Fractional Stable Distributions”, Journal of Mathematical Sciences, 105:6 (2001), 2569–2576 | DOI | MR | Zbl

[18] Zolotarev V. M., One-dimensional stable Distributions, Amer. Mat. Soc., Providence, RI, 1986 | MR | Zbl

[19] Bening V. E., Korolev V. Yu., Kolokol'tsov V. N., Saenko V. V., Uchaikin V. V., Zolotarev V. M., “Estimation of parameters of fractional stable distributions”, Journal of Mathematical Sciences, 123:1 (2004), 3722–3732 | DOI | MR | Zbl

[20] Saenko V. V., Maximum likelihood algorithm for approximation of local fluctuational fluxes at the plasma periphery by fractional stable distributions, 2012, arXiv: 1209.2297 [physics.plasm-ph]

[21] Saenko V. V., “Estimation of the Parameters of Fractional-Stable Laws by the Method of Minimum Distance”, Journal of Mathematical Sciences, 214:1 (2016), 101–114 | DOI | MR | Zbl

[22] Chambers J. M., Mallows C. L., Stuck B. W., “A method for simulating stable random variables”, Journal of the American Statistical Association, 71:354 (1976), 340–344 | DOI | MR | Zbl

[23] Kanter M., “Stable Densities Under Change of Scale and Total Variation Inequalities”, The Annals of Probability, 3:4 (1975), 697–707 | DOI | MR | Zbl

[24] Saenko V., Saenko Yu., “Approximation of Microarray Gene Expression Profiles by the Stable Laws”, International Journal of Environmental Engineering, 2:1 (2015), 98–102 http://seekdl.org/journal_page_papers.php?jourid=125&issueid=149