Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2016_11_2_a21, author = {A. V. Penenko and S. N. Nikolaev and S. Golushko and A. V. Romashenko and I. A. Kirilova}, title = {Numerical algorithms for diffusion coefficient identification in problems of tissue engineering}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {426--444}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a21/} }
TY - JOUR AU - A. V. Penenko AU - S. N. Nikolaev AU - S. Golushko AU - A. V. Romashenko AU - I. A. Kirilova TI - Numerical algorithms for diffusion coefficient identification in problems of tissue engineering JO - Matematičeskaâ biologiâ i bioinformatika PY - 2016 SP - 426 EP - 444 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a21/ LA - ru ID - MBB_2016_11_2_a21 ER -
%0 Journal Article %A A. V. Penenko %A S. N. Nikolaev %A S. Golushko %A A. V. Romashenko %A I. A. Kirilova %T Numerical algorithms for diffusion coefficient identification in problems of tissue engineering %J Matematičeskaâ biologiâ i bioinformatika %D 2016 %P 426-444 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a21/ %G ru %F MBB_2016_11_2_a21
A. V. Penenko; S. N. Nikolaev; S. Golushko; A. V. Romashenko; I. A. Kirilova. Numerical algorithms for diffusion coefficient identification in problems of tissue engineering. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 426-444. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a21/
[1] Murphy S. V., Atala A., “Organ engineering — combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation”, Bioessays, 35 (2012), 163–172 | DOI
[2] Kirilova I. A., Sharkeev Yu. P., Nikolaev S. V., Podorozhnaya V. T., Uvarkin P. V., Ratushnyak A. S., Chebodaeva V. V., “Physicomechanical properties of the extracellular matrix of a demineralized bone”, AIP Conference Proceedings, 1760, 2016, 020027-1–020027-7 | DOI
[3] Penenko V. V., Metody chislennogo modelirovaniya atmosfernykh protsessov, Gidrometeoizdat, L., 1981, 352 pp.
[4] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka. Gl. red. fiz.-mat. lit., M., 1988, 288 pp.
[5] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 550 pp.
[6] Kabanikhin S. I., Gasanov A., Penenko A. V., “Metod gradientnogo spuska dlya resheniya obratnoi koeffitsientnoi zadachi teploprovodnosti”, Sib. zhurn. vychisl. matem, 11:1 (2008), 41–51 | DOI | Zbl
[7] Scherzer O., Grasmair M., Grossauer H., Haltmeier M., Lenzen F., Variational Methods in Imaging, Applied Mathematical Sciences, Springer, New York, 2009, 320 pp. | MR | Zbl
[8] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, 2-e izd., pererab. i dop., Nauka, Novosibirsk, 1992, 360 pp.
[9] Cheverda V. A., Kostin V. I., “R-pseudoinverse for compact operators in Hilbert space: existence and stability”, J. Inverse and Ill-Posed Problems, 3:2 (1995), 131–148 | DOI | MR | Zbl
[10] Goldman N. L., “Obratnye zadachi s finalnym pereopredeleniem dlya parabolicheskikh uravnenii s neizvestnymi koeffitsientami pri starshei proizvodnoi”, Doklady Akademii nauk, 438:2 (2011), 162–167 | Zbl
[11] Marchuk G. I., “O postanovke nekotorykh obratnykh zadach”, Doklady AN SSSR, 156:3 (1964), 503–506 | Zbl
[12] Marchuk G. I., Chislennoe reshenie zadach dinamiki atmosfery i okeana, Gidrometeoizdat, L., 1974
[13] Penenko V. V., “Vychislitelnye aspekty modelirovaniya dinamiki atmosfernykh protsessov i otsenki vliyaniya razlichnykh faktorov na dinamiku atmosfery”, Nekotorye problemy vychislitelnoi i prikladnoi matematiki, ed. Lavrentev M. M., Nauka, Novosibirsk, 1975, 61–77
[14] Penenko A. V., “O reshenii obratnoi koeffitsientnoi zadachi teploprovodnosti metodom proektsii gradienta”, Sibirskie elektronnye matematicheskie izvestiya, 2010, Trudy pervoi mezhdunarodnoi molodezhnoi shkoly-konferentsii “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach” Chast I, S.178–S.198
[15] Penenko A. V., “Chislennyi algoritm opredeleniya temperaturoprovodnosti sloistoi sredy na osnove singulyarnogo razlozheniya operatora chuvstvitelnosti modeli teploprovodnosti”, Sibirskie elektronnye matematicheskie izvestiya, 8, Trudy vtoroi mezhdunarodnoi molodezhnoi shkoly-konferentsii “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach” Chast II (2011), 320–339
[16] Hasanov A., DuChateau P., Pektas B., “An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation”, Journal of Inverse and Ill-Posed Problems, 14:5 (2006), 435–463 | DOI | MR | Zbl
[17] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965, 448 pp. | MR
[18] Kaltenbacher B., “Some Newton-type methods for the regularization of nonlinear ill-posed problems”, Inverse Problems, 13:3 (1997), 729–753 | DOI | MR | Zbl
[19] GNU Scientific Library Reference Manual Edition 2.2.1, for GSL Version 2.2.1, (accessed 25.10.2016) https://www.gnu.org/software/gsl/manual/html_node/