Software for the partial spectroscopy of human brain
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 1, pp. 127-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new methodology was developed to calculate spectral characteristics of various compartments of the human brain. This technology combines two types of the spatial data: 1) functional tomogram presenting spatial distribution of the electric sources and 2) anatomical structure of the brain as determined by the magnetic resonance imaging. Presently the functional tomogram is calculated from the multichannel magnetoencephalograms. In the functional tomogram, unique spatial location corresponds to each elementary oscillation. Spatial structure of the brain compartment is generated by the segmentation of magnetic resonance image. The partial spectrum is composed by the selection of frequencies, belonging to this compartment. The software implementing this methodology was developed and applied to partial spectral analysis of the alpha rhythm.
@article{MBB_2016_11_1_a8,
     author = {S. D. Rykunov and M. N. Ustinin and A. G. Polyanin and V. V. Sytchev and R. R. Llin\'as},
     title = {Software for the partial spectroscopy of human brain},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a8/}
}
TY  - JOUR
AU  - S. D. Rykunov
AU  - M. N. Ustinin
AU  - A. G. Polyanin
AU  - V. V. Sytchev
AU  - R. R. Llinás
TI  - Software for the partial spectroscopy of human brain
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 127
EP  - 140
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a8/
LA  - ru
ID  - MBB_2016_11_1_a8
ER  - 
%0 Journal Article
%A S. D. Rykunov
%A M. N. Ustinin
%A A. G. Polyanin
%A V. V. Sytchev
%A R. R. Llinás
%T Software for the partial spectroscopy of human brain
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 127-140
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a8/
%G ru
%F MBB_2016_11_1_a8
S. D. Rykunov; M. N. Ustinin; A. G. Polyanin; V. V. Sytchev; R. R. Llinás. Software for the partial spectroscopy of human brain. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a8/

[1] Wolfe J. W., Rawlings C. A., Llinás R. R., “A procedure for chronic microelectrode recording from cerebellar cortex in the awake cat and monkey”, Physiology Behavior, 10 (1973), 967–970 | DOI

[2] Welsh J. P., Lang E., Suglhara I., Llinás R., “Dynamic organization of motor control within the olivocerebellar system”, Nature, 374 (1994), 453–457 | DOI

[3] Clement R. S., Witte R. S., Rousche P. J., Kipke D. R., “Functional connectivity in auditory cortex using chronic, multichannel unit recordings”, Neurocomputing, 26–27 (1999), 347–354 | DOI

[4] Parshin P. P., Zemlyanov M. G., Irodova A. V., Ozhogin V. I., Tolmacheva N. S., Shustov L. D., “Spektry kolebanii atomov $\mathrm{Cu}$ i $\mathrm{Tl}$ v $\mathrm{Tl_2Ba_2CaCu_2O_8}$”, Fizika tverdogo tela, 36:4 (1994), 1155–1161

[5] Parshin P. P., Zemlyanov M. G., Brand R. A., “Partial spectra of atomic thermal vibrations in decagonal and icosahedral quasicrystals”, Crystallography Reports, 52:3 (2007), 436–439 | DOI

[6] Parshin P. P., Zemlyanov M. G., Brand R. A., “Atomic dynamics and interatomic interaction in quasicrystals”, Crystallography Reports, 56:7 (2011), 1145–1148 | DOI

[7] Rosenberg J. R., Halliday D. M., Breeze P., Conway B. A., “Identification of patterns of neuronal connectivity — partial spectra, partial coherence, and neuronal interactions”, Journal of Neuroscience Methods, 83 (1998), 57–72 | DOI

[8] Halliday D. M., “Spike-Train Analysis for Neural Systems”, Modeling in the Neurosciences: from Biological Systems to Neuromimetic Robotics, eds. Reeke G. N., Poznansky R. R., Lindsay K. A., Rosenberg J. R., Sporns O., CRC Press, New York, 2005, 555–580

[9] Lakhno V. D., Isaev E. A., Pugachev V. D., Zaitsev A. Yu., Fialko N. S., Rykunov S. D., Ustinin M. N., “Razvitie informatsionno-kommunikatsionnykh tekhnologii v Puschinskom nauchnom tsentre RAN”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 529–544 | DOI

[10] Korshakov A. V., Polikarpov M. A., Ustinin M. N., Sychev V. V., Rykunov S. D., Naurzakov S. P., Grebenkin A. P., Panchenko V. Ya., “Registratsiya i analiz tochnykh chastotnykh EEG/MEG otklikov auditornoi kory golovnogo mozga cheloveka v otvet na monauralnuyu stimulyatsiyu zvukom s fiksirovannymi chastotnymi sostavlyayuschimi”, Matematicheskaya biologiya i bioinformatika, 9:1 (2014), 296–308 | DOI

[11] Ustinin M. N., Sychev V. V., Linas R., “Integrirovannyi paket programm MEGMRIAn dlya analiza i modelirovaniya dannykh magnitnoi entsefalografii”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 691–707 | DOI

[12] Ustinin M. N., Sychev V. V., Walton K. D., Llinás R. R., “New Methodology for the Analysis and Representation of Human Brain Function: MEGMRIAn”, Mathematical Biology Bioinformatics, 9:2 (2014), 464–481 | DOI

[13] Llinás R. R., Ustinin M. N., Rykunov S. D., Boyko A. I., Sychev V. V., Walton K. D., Rabello G. M., Garcia J., “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Frontiers in Neuroscience, 9 (2015), 373 | DOI

[14] Llinás R. R., Ustinin M. N., “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014), 43 | DOI

[15] Llinás R. R., Ustinin M. N., Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities, U.S. Patent. US20140107979 A1, 2014

[16] Belouchrani A., Abed-Meraim K., Cardoso J. F., Moulines E., “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Process, 45:2 (1997), 434–444 | DOI

[17] Sarvas J., “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem”, Phys. Med. Biol., 32:1 (1987), 11–22 | DOI

[18] Ester M., Kriegel H. P., Sander J., Xu X., “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, Second Int. Conf. Knowl. Discov. Data Min., 1996, 226–231

[19] Fischl B., “Automatically Parcellating the Human Cerebral Cortex”, Cereb. Cortex, 14:1 (2004), 11–22 | DOI

[20] Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., Buckner R. L., Dale A. M., Maguire R. P., Hyman B. T., Albert M. S., Killiany R. J., “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest”, Neuroimage, 31:3 (2006), 968–980 | DOI

[21] Fischl B., Salat D. H., Van Der Kouwe A. J. W., Makris N., Segonne F., Quinn B. T., Dale A. M., “Sequence-independent segmentation of magnetic resonance images”, Neuroimage, 23, Suppl. 1 (2004), 69–84 | DOI

[22] Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J. C., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S., Miller J. V., Pieper S., Kikinis R., “3D Slicer as an image computing platform for the Quantitative Imaging Network”, Magn. Reson. Imaging, 30:9 (2012), 1323–1341 | DOI

[23] Yushkevich P. A., Piven J., Hazlett H. C., Smith R. G., Ho S., Gee J. C., Gerig G., “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability”, Neuroimage, 31:3 (2006), 1116–1128 | DOI