Inclusion of the most important multi-particle interactions in the AMBER force field and optimization of energy parameters of the revised force field
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 580-592.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new functional form for force field of non-covalent interactions is developed. Besides traditional members, it involves induced (by partial charges) polarization of all atoms as well as three-particle dispersion interactions of atoms with covalent bonds. The corresponding new members are added to a standard AMBER force field. Within this unified functional form of the force field, parameters of all types of non-covalent interactions are optimized using data on molecular crystals. A noticeable increase in correlation coefficient between calculated and experimental energy of cohesion of molecules in molecular crystals is shown.
@article{MBB_2015_10_2_a17,
     author = {S. A. Garbuzinskiy and B. T. Matkarimov and A. V. Finkelstein},
     title = {Inclusion of the most important multi-particle interactions in the {AMBER} force field and optimization of energy parameters of the revised force field},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {580--592},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a17/}
}
TY  - JOUR
AU  - S. A. Garbuzinskiy
AU  - B. T. Matkarimov
AU  - A. V. Finkelstein
TI  - Inclusion of the most important multi-particle interactions in the AMBER force field and optimization of energy parameters of the revised force field
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 580
EP  - 592
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a17/
LA  - ru
ID  - MBB_2015_10_2_a17
ER  - 
%0 Journal Article
%A S. A. Garbuzinskiy
%A B. T. Matkarimov
%A A. V. Finkelstein
%T Inclusion of the most important multi-particle interactions in the AMBER force field and optimization of energy parameters of the revised force field
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 580-592
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a17/
%G ru
%F MBB_2015_10_2_a17
S. A. Garbuzinskiy; B. T. Matkarimov; A. V. Finkelstein. Inclusion of the most important multi-particle interactions in the AMBER force field and optimization of energy parameters of the revised force field. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 580-592. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a17/

[1] Salmon J. K., Shah Y., Wriggers W., “Atom-level characterization of structural dynamics of proteins”, Science, 330 (2010), 341–346 | DOI

[2] Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., Dror R. O., Shaw D. E., “Improved side-chain torsion potentials for the Amber ff99SB protein force field”, Proteins: Struct. Funct. Bioinf., 78 (2010), 1950–1958

[3] Levitt M., Hirshberg M., Sharon R., Daggett V., “Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution”, Comput. Phys. Commun., 91 (1995), 215–231 | DOI

[4] MacKerell A. D., Jr., Bashford D., Bellott M., Dunbrack R. L., Jr., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F. T.K., Mattos C., Michnick S., Ngo T., Nguyen D. T., Prodhom B., Reiher W. E., III, Roux B., Schlenkrich M., Smith J. C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M., “All-atom empirical potential for molecular modeling and dynamics studies of proteins”, J. Phys. Chem. B, 102 (1998), 3586–3616 | DOI

[5] Jorgensen W. L., Maxwell D. S., Tirado-Rives J., “Development and testing of the OPLS allatom force field on conformational energetics and properties of organic liquids”, J. Am. Chem. Soc., 118 (1996), 11225–11236 | DOI

[6] Halgren T. A., “Merck Molecular Force Field. I. Basis, form, parameterization and performance of MMFF94”, J. Comput. Chem., 17 (1995), 490–519 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A., “Development and testing of a general Amber force fields”, J. Comput. Chem., 25 (2004), 1157–1174 | DOI

[8] Finkelstein A. V., “Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding”, Chem. Central J., 1 (2007), 21 | DOI

[9] Finkelstein A. V., Lobanov M. Y., Dovidchenko N. V., Bogatyreva N. S., “Many-atom Van Der Waals interactions lead to direction-sensitive interactions of covalent bonds”, J. Bioinform. Comput. Biol., 6 (2008), 693–707 | DOI

[10] Pereyaslavets L. B., Finkelshtein A. V., “Silovoe pole FFSol dlya rascheta vzaimodeistvii molekul v vodnom okruzhenii”, Molekulyarnaya biologiya, 44 (2010), 340–354 | Zbl

[11] Pereyaslavets L. B., Finkelstein A. V., “Development and testing of PFFsol_1, a new polarizable atomic force field for calculation of molecular interactions in implicit water environment”, J. Phys. Chem. B, 116 (2012), 4646–4654 | DOI

[12] Piana S., Klepeis J. L., Shaw D. E., “Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations”, Curr. Opin. Struct. Biol., 24 (2014), 98–105 | DOI

[13] Wang J., Cieplak P., Kollman P. A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, J. Comput. Chem., 21 (2000), 1049–1074 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[14] Still W. C., Tempczyk A., Hawley R. C., Hendrickson T., “Semianalytical treatment of solvation for molecular mechanics and dynamics”, J. Am. Chem. Soc., 112 (1990), 6127–6129 | DOI

[15] Axilrod B. M., Teller E., “Interaction of the van der Waals' type between three atoms”, J. Chem. Phys., 11 (1943), 299–300 | DOI

[16] Glyakina A. V., Balabaev N. K., Galzitskaya O. V., “Two-, three-, and four-state events occur in the mechanical unfolding of small protein L using molecular dynamics simulation”, Protein Pept. Lett., 17 (2010), 92–103 | DOI

[17] Balabaev N. K., Garbuzinskii S.A, Galzitskaya O. V., Glyakina A. V., Matkarimov B. T., Finkelshtein A. V., “Vklyuchenie vazhneishikh mnogochastichnykh vzaimodeistvii v silovoe pole AMBER i primenenie obnovlennogo polya k molekulyarno-dinamicheskim raschetam”, Matematicheskaya biologiya i bioinformatika, 10:2 (2015), 427–435 | DOI

[18] Allen F. H., “The Cambridge Structural Database: a quarter of a million crystal structures and rising”, Acta Cryst., B58 (2002), 380–388 | DOI

[19] Levitt M., Hirshberg M., Sharon R., Daggett V., “Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution”, Comput. Phys. Commun., 91 (1995), 215–231 | DOI

[20] Bois C., “Structure du p-cresol a basse temperature”, Acta Cryst., B26 (1970), 2086 | DOI