Continuum Model of the One-Dimensional Holstein Bipolaron in DNA
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 430-437
Cet article a éte moissonné depuis la source Math-Net.Ru
The work is devoted to obtaining the 1D bipolaron functional by Holstein method for the continuum approximation. We analyzed the effect of electron correlations associated with the direct dependence of the wave function of the electron system from the electron-electron distance on the binding energy of the bipolaron. Numerical calculations of the bipolaron binding energy were performed according to the parameters of the system.
@article{MBB_2014_9_2_a11,
author = {N. I. Kashirina and V. D. Lakhno},
title = {Continuum {Model} of the {One-Dimensional} {Holstein} {Bipolaron} in {DNA}},
journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
pages = {430--437},
year = {2014},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a11/}
}
N. I. Kashirina; V. D. Lakhno. Continuum Model of the One-Dimensional Holstein Bipolaron in DNA. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 430-437. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a11/
[1] Kasumov A. Y., Kociak M., Gueron S., Reulet B., Volkov V., Klinov D., Bouchiat H., Science, 291 (2001), 280–282 | DOI
[2] Lakhno V. D., Sultanov V. B., Biofizika, 56:2 (2011), 230–234
[3] Holstein T., Ann. Phys., 8 (1959), 325–342 | DOI
[4] Peeters F. M., Smondyrev M. A., Phys. Rev. B, 43 (1990), 4920–4926 | DOI
[5] Takada Y., Phys. Rev. B, 26:3 (1982), 1223–1232 | DOI
[6] Kashirina N. I., Pashitskii E. A., Mozdor E. V., Sheka V. I., Izvestiya RAN. Ser. fizich., 59:8 (1995), 127–133
[7] Pekar S. I., Issledovaniya po elektronnoi teorii kristallov, Gostekhteorizdat, M., 1951, 256 pp.
[8] Kashirina N. I., Lakhno V. D., Matematicheskoe modelirovanie avtolokalizovannykh sostoyanii v kondensirovannykh sredakh, Fizmatlit, M., 2013, 292 pp.