Experimental and Theoretical Methods of Study of Ionic Channels
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 112-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work realizes the review of major types and properties of ion channels, experimental and theoretical approaches and models of describing their function. Voltage-clamp and patch-clamp methods with their configuration are considered, special attention given to mathematical models of ion channels and application of molecular dynamics, Brownian dynamic simulation, Poisson–Nernst–Planck equation and modern combined approaches. Ab initio methods of quantum chemistry are presented by DFT. Application conditions for each of these methodologies with their advantages and disadvantages are represented.
@article{MBB_2014_9_1_a16,
     author = {D. A. Turchenkov and V. S. Bystrov},
     title = {Experimental and {Theoretical} {Methods} of {Study} of {Ionic} {Channels}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {112--148},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a16/}
}
TY  - JOUR
AU  - D. A. Turchenkov
AU  - V. S. Bystrov
TI  - Experimental and Theoretical Methods of Study of Ionic Channels
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 112
EP  - 148
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a16/
LA  - ru
ID  - MBB_2014_9_1_a16
ER  - 
%0 Journal Article
%A D. A. Turchenkov
%A V. S. Bystrov
%T Experimental and Theoretical Methods of Study of Ionic Channels
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 112-148
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a16/
%G ru
%F MBB_2014_9_1_a16
D. A. Turchenkov; V. S. Bystrov. Experimental and Theoretical Methods of Study of Ionic Channels. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 112-148. http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a16/

[1] Leuchtag H. R., Voltage-Sensitive Ion Channels: Biophysics of Molecular Excitability, Springer, 2008, 545 pp. | MR | Zbl

[2] Leuchtag H. R., Bystrov V. S., “Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: bioferroelectricity and superionic conduction”, Ferroelectrics, 220:1 (1999), 157–204 | DOI

[3] Gennis R. B., Biomembranes, Springer, 1989, 553 pp.

[4] Sperelakis N., Cell Physiology Source Book, Elsevier Science, 2001, 996 pp.

[5] Maffeo C., Bhattacharya S., Yoo J., Wells D., Aksimentiev A., “Modeling and simulation of ion channels”, Chemical Reviews, 112:12 (2012), 6250–6284 | DOI

[6] Lines M. E., Glass A. M., Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, 1977, 680 pp.

[7] Smolenskiy G., Ferroelectrics and Related Materials. Ferroelectricity and Related Phenomena, Gordon and Breach Science Publishers, 1984, 770 pp.

[8] Leuchtag H. R., “Fit of the dielectric anomaly of squid axon membrane near heat-block temperature to the ferroelectric Curie–Weiss law”, Biophysical Chemistry, 53:3 (1995), 197–205 | DOI

[9] Bystrov V. S., “Ferroelectric liquid crystal models of ion channels and gating phenomena in biological membranes”, Ferroelectrics Letters Section, 23:3–4 (1997), 87–93 | DOI

[10] Bystrov V. S., Leuchtag H. R., “Bioferroelectricity: Modeling the transitions of the sodium channel”, Ferroelectrics, 155:1 (1994), 19–24 | DOI

[11] Leuchtag H., Bystrov V., “Ferroelectricity in liquid crystals, films, microtubules and voltage-gated ion channels”, Biophysical Journal, 76:1 (1999), A330–A330

[12] Hille B., Ion Channels of Excitable Membranes, Sinauer Sunderland, 2001, 814 pp.

[13] North R. A., Ligand and Voltage Gated Ion Channels, CRC Press, 1995, 365 pp.

[14] Peracchia C., Handbook of Membrane Channels: Molecular and Cellular Physiology, Academic Press, 1994, 591 pp.

[15] Jan L. Y., Jan Y. N., “Voltage-sensitive ion channels”, Cell, 56:1 (1989), 13–25 | DOI

[16] Eisenman G., Dani J., “An introduction to molecular architecture and permeability of ion channels”, Annual Review of Biophysics and Biophysical Chemistry, 16:1 (1987), 205–226 | DOI

[17] Stevens C. F., “Sodium channel structure-function relations”, Society of General Physiologists Series, 41 (1986), 99–108

[18] Coste B., Xiao B., Santos J. S., Syeda R., Grandl J., Spencer K. S., Kim S. E., Schmidt M., Mathur J., Dubin A. E., et al., “Piezo proteins are pore-forming subunits of mechanically activated channels”, Nature, 483:7388 (2012), 176–181 | DOI | MR

[19] Kim S. E., Coste B., Chadha A., Cook B., Patapoutian A., “The role of Drosophila Piezo in mechanical nociception”, Nature, 483:7388 (2012), 209–212 | DOI

[20] Hucho F., Weise C., “Ligand gated ion channels”, Angewandte Chemie International Edition, 40:17 (2001), 3100–3116 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[21] Peyrard M., Nonlinear Excitations in Biomolecules, Springer, 1995, 426 pp.

[22] Leuchtag H. R., “Indications of the existence of ferroelectric units in excitable-membrane channels”, Journal of Theoretical Biology, 127:3 (1987), 321–340 | DOI

[23] Leuchtag H. R., “Phase transitions and ion currents in a model ferroelectric channel unit”, Journal of Theoretical Biology, 127:3 (1987), 341–359 | DOI

[24] Bystrov V. S., Lakhno V. D., Molchanov A. M., “Ferroelectric active models of ion channels in biomembranes”, Journal of Theoretical Biology, 168:4 (1994), 383–393 | DOI

[25] Gordon A., Vugmeister B., Rabitz H., Dorfman S., Felsteiner J., Wyder P., “A ferroelectric model for the generation and propagation of an action potential and its magnetic field stimulation”, Ferroelectrics, 220:1 (1999), 291–304 | DOI

[26] Bystrov V. S., Bdikin I. K., Heredia A., Pullar R. C., Mishina E. D., Sigov A. S., Kholkin A. L., “Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes”, Piezoelectric Nanomaterials for Biomedical Applications Nanomedicine and Nanotoxicology, Springer, 2012, 187–211 | DOI

[27] Gruverman A., Rodriguez B. J., Kalinin S. V., “Electromechanical behavior in biological systems at the nanoscale”, Scanning Probe Microscopy. Electrical and Electromechanical Phenomena at the Nanoscale, eds. Kalinin S. V., Gruverman A., Springer, 2007, 615–633 | DOI

[28] Liu Y., Zhang Y., Chow M. J., Chen Q. N., Li J., “Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy”, Physical Review Letters, 108:7 (2012), 078103 | DOI

[29] Kalinin S. V., Gruverman A., Scanning Probe Microscopy, Springer, 2007, 1024 pp.

[30] Kalinin S. V., Rodriguez B. J., Shin J., Jesse S., Grichko V., Thundat T., Baddorf A. P., Gruverman A., “Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale”, Ultramicroscopy, 106:4 (2006), 334–340 | DOI

[31] Kalinin S. V., Jesse S., Rodriguez B. J., Seal K., Baddorf A. P., Zhao T., Chu Y., Ramesh R., Eliseev E. A., Morozovska A. N., et al., “Recent advances in electromechanical imaging on the nanometer scale: Polarization dynamics in ferroelectrics, biopolymers, andliquidimaging”, Japanese Journal of Applied Physics, 46 (2007), 5674–5685 | DOI

[32] Znamenskiy V. S., Green M. E., “Quantum calculations on hydrogen bonds in certain water clusters show cooperative effects”, Journal of Chemical Theory and Computation, 3:1 (2007), 103–114 | DOI

[33] Riahi S., Roux B., Rowley C. N., “QM/MM molecular dynamics simulations of the hydration of Mg (II) and Zn (II) ions”, Canadian Journal of Chemistry, 91:7 (2013), 552–558 | DOI

[34] Bystrov V. S., Kompyuternoe modelirovanie molekulyarnykh struktur. Biosegnetoelektrichestvo: peptidnye nanotrubki, Lambert Academic Publishing, 2013, 124 pp.

[35] Kariev A. M., Green M. E., “Quantum salculations on potassium channel selectivity and gating”, Biophysical Journal, 96:3 (2009), 192a | DOI

[36] Bucher D., Rothlisberger U., Guidoni L., Carloni P., “QM/MM Car-Parrinello molecular dynamics study of selectivity in a potassium channel”, Abstracts of Papers of the American Chemical Society, 228, 309

[37] Papazian D. M., Shao X. M., Seoh S. A., Mock A. F., Huang Y., Wainstock D. H., “Electrostatic interactions of S4 voltage sensor in shaker K+ channel”, Neuron, 14:6 (1995), 1293–1301 | DOI

[38] Sapronova A., Bystrov V., Green M. E., “Ion channel gating and proton transport”, Journal of Molecular Structure: THEOCHEM, 630:1 (2003), 297–307 | DOI

[39] Sapronova A., Bystrov V. S., Green M. E., “Water, proton transfer, and hydrogen bonding in ion channel gating”, Frontiers in Bioscience, 8 (2003), 1356–1370 | DOI

[40] Green M. E., “A possible role for phosphate in complexing the arginines of S4 in voltage gated channels”, Journal of Theoretical Biology, 233:3 (2005), 337–341 | DOI

[41] Pradhan P., Ghose R., Green M. E., “Voltage gating and anions, especially phosphate: a model system”, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1717:2 (2005), 97–103 | DOI

[42] Yu W., Lopes P. E., Roux B., MacKerell A. D., “Six-site polarizable model of water based on the classical Drude oscillator”, The Journal of Chemical Physics, 138 (2013)

[43] Whitfield T. W., Varma S., Harder E., Lamoureux G., Rempe S. B., Roux B., “Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models”, Journal of Chemical Theory and Computation, 3:6 (2007), 2068–2082 | DOI

[44] Chowdhary J., Harder E., Lopes P. E., Huang L., MacKerell A. D. (Jr.), Roux B., “A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids”, The Journal of Physical Chemistry B, 117:31 (2013), 9142–9160 | DOI

[45] Yigzawe T. M., Sadus R. J., “Thermodynamic properties of liquid water from a polarizable intermolecular potential”, The Journal of Chemical Physics, 138 (2013), 044503 | DOI

[46] Hodgkin A., Katz B., “The effect of sodium ions on the electrical activity of the giant axon of the squid”, The Journal of Physiology, 108:1 (1949), 37–77

[47] Hodgkin A., Huxley A., “The components of membrane conductance in the giant axon of Loligo”, The Journal of Physiology, 116:4 (1952), 473–496

[48] Cole K., Moore J., “Ionic current measurements in the squid giant axon membrane”, The Journal of General Physiology, 44:1 (1960), 123–167 | DOI

[49] Cole K., Moore J., “Potassium ion current in the squid giant axon: dynamic characteristic”, Biophysical Journal, 1:1 (1960), 1–14 | DOI

[50] Antonov V. F., Chernysh A. M., Pasechnik V. I., Voznesenskii S. A., Kozlova E. K., Biofizika, Vlados, 2003, 228 pp.

[51] Ogden D., Microelectrode Techniques: the Plymouth Workshop Handbook, Company of Biologists, Cambridge, UK, 1994, 448 pp. | Zbl

[52] Purves D., Neuroscience, Sinauer Associates, 2012, 759 pp.

[53] Walz W., Patch-Clamp Analysis: Advanced Techniques, Neuromethods, Humana Press, 2007, 475 pp. | DOI

[54] Brennecke R., Lindemann B., “Theory of a membrane-voltage clamp with discontinuous feedback through a pulsed current clamp”, Review of Scientific Instruments, 45:2 (1974), 184–188 | DOI

[55] Wilson W., Goldner M., “Voltage clamping with a single microelectrode”, Journal of Neurobiology, 6:4 (1975), 411–422 | DOI

[56] Molleman A., Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology, Wiley, 2002, 186 pp.

[57] Smith T. G., Lecar H., Redman S. J., Gage P. W., Voltage and Patch Clamping With Microelectrodes, American Physiological Society Washington, 1985, 260 pp.

[58] Hamill O., Marty A., Neher E., Sakmann B., Sigworth F., “Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches”, Pflugers Archiv, 391:2 (1981), 85–100 | DOI

[59] Windhorst U., Johansson H., Modern Techniques in Neuroscience Research: 33 Tables, Springer, 1999, 1325 pp.

[60] Penner R., “A practical guide to patch clamping”, Single Channel Recording, eds. Sakmann B., Neher E., Springer, 1995, 3–30 | DOI

[61] Zhao Y., Inayat S., Dikin D., Singer J., Ruoff R., Troy J., “Patch clamp technique: Review of the current state of the art and potential contributions from nanoengineering”, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 222:1 (2008), 1–11 | DOI

[62] Fertig N., Blick R. H., Behrends J. C., “Whole cell patch clamp recording performed on a planar glass chip”, Biophysical Journal, 82:6 (2002), 3056–3062 | DOI

[63] Horn R., Marty A., “Muscarinic activation of ionic currents measured by a new whole-cell recording method”, The Journal of General Physiology, 92:2 (1988), 145–159 | DOI

[64] Korn S., Horn R., “Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording”, The Journal of General Physiology, 94:5 (1989), 789–812 | DOI

[65] Chad J., Kalman D., Armstrong D., “The role of cyclic AMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels”, Society of General Physiologists Series, 42 (1987), 167

[66] Becq F., “Ionic channel rundown in excised membrane patches”, Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1286:1 (1996), 53–63 | DOI

[67] Tang X. D., Hoshi T., “Rundown of the hyperpolarization-activated KAT1 channel involves slowing of the opening transitions regulated by phosphorylation”, Biophysical journal, 76:6 (1999), 3089–3098 | DOI

[68] Belles B., Hescheler J., Trautwein W., Blomgren K., Karlsson J., “A possible physiological role of the Ca-dependent protease calpain and its inhibitor calpastatin on the Ca current in guinea pig myocytes”, Pflügers Archiv, 412:5 (1988), 554–556 | DOI

[69] Belles B., Malecot C., Hescheler J., Trautwein W., ““Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium”, Pflügers Archiv, 411:4 (1988), 353–360 | DOI

[70] Bezanilla F., Caputo C., DiPolo R., Rojas H., “Potassium conductance of the squid giant axon is modulated by ATP”, Proceedings of the National Academy of Sciences, 83:8 (1986), 2743–2745 | DOI

[71] Fernandez J., Fox A., Krasne S., “Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells”, The Journal of Physiology, 356:1 (1984), 565–585

[72] Cepeda C., Colwell C. S., Itri J. N., Chandler S. H., Levine M. S., “Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances”, Journal of Neurophysiology, 79:1 (1998), 82–94

[73] Horn R., Korn S. J., “Prevention of rundown in electrophysiological recording”, Methods in Enzymology, 207 (1992), 149–155 | DOI

[74] Armstrong D., Eckert R., “Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization”, Proceedings of the National Academy of Sciences, 84:8 (1987), 2518–2522 | DOI

[75] Marty A., Neher E., “Tight-seal whole-cell recording”, Single Channel Recording, eds. Sakmann B., Neher E., Springer, 1995, 31–52 | DOI

[76] Boulton A., Baker G., Walz W., Patch-Clamp Applications and Protocols, Humana Press Incorporated, 1995, 316 pp.

[77] Rae J., Cooper K., Gates P., Watsky M., “Low access resistance perforated patch recordings using amphotericin B”, Journal of Neuroscience Methods, 37:1 (1991), 15–26 | DOI

[78] Korn S., Marty A., Connor J., Horn R., “Perforated patch recording”, Methods Neuroscience, 4:26 (1991), 264–273

[79] De Kruijff B., Demel R., “Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III: Molecular structure of the polyene antibiotic-cholesterol complexes”, Biochimica et Biophysica Acta (BBA)-Biomembranes, 339:1 (1974), 57–70 | DOI

[80] Akaike N., Harata N., “Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms”, The Japanese Journal of Physiology, 44:5 (1994), 433–473 | DOI

[81] Zeidler U., Barth C., Stark G., “Radiation-induced and free radical-mediated inactivation of ion channels formed by the polyene antibiotic Amphotericin B in lipid membranes: effect of radical scavengers and single-channel analysis”, International Journal of Radiation Biology, 67:2 (1995), 127–134 | DOI

[82] Kyrozis A., Reichling D. B., “Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration”, Journal of Neuroscience Methods, 57:1 (1995), 27–35 | DOI

[83] Hladky S., Haydon D., “Ion movements in gramicidin channels”, Current Topics in Membranes and Transport, 21 (1984), 327–372 | DOI

[84] Fan J. S., Palade P., “Perforated patch recording with $\beta$-escin”, Pflügers Archiv, 436:6 (1998), 1021–1023 | DOI

[85] Launikonis B. S., Stephenson D. G., “Effects of $\beta$-escin and saponin on the transverse-tubular system and sarcoplasmic reticulum membranes of rat and toad skeletal muscle”, Pflügers Archiv, 437:6 (1999), 955–965 | DOI

[86] Ishibashi H., Moorhouse A. J., Nabekura J., “Perforated whole-cell patch-clamp technique: a user's guide”, Patch Clamp Techniques, Springer Protocols Handbooks, ed. Okada Y., Springer, 2012, 71–83 | DOI

[87] Gao J., Truhlar D. G., “Quantum mechanical methods for enzyme kinetics”, Annual Review of Physical Chemistry, 53:1 (2002), 467–505 | DOI

[88] Kamerlin S. C., Vicatos S., Dryga A., Warshel A., “Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems”, Annual Review of Physical Chemistry, 62 (2011), 41–64 | DOI

[89] Modi N., Winterhalter M., Kleinekathöfer U., “Computational modeling of ion transport through nanopores”, Nanoscale, 4:20 (2012), 6166–6180 | DOI

[90] Comer J., Aksimentiev A., “Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics”, The Journal of Physical Chemistry C, 116:5 (2012), 3376–3393 | DOI

[91] Carr R., Comer J., Ginsberg M. D., Aksimentiev A., “Atoms-to-micronsmodelforsmall solute transport through sticky nanochannels”, Lab on a Chip, 11:22 (2011), 3766–3773 | DOI

[92] Levitt D. G., “Modeling of ion channels”, The Journal of General Physiology, 113:6 (1999), 789–794 | DOI

[93] Mackay D., Berens P., Wilson K., Hagler A., “Structure and dynamics of ion transport through gramicidin A”, Biophysical Journal, 46:2 (1984), 229–248 | DOI

[94] Kreusch A., Schulz G. E., “Refined structure of the porin from Rhodopseudomonas Blastica: comparison with the porin from Rhodobacter Capsulatus”, Journal of Molecular Biology, 243:5 (1994), 891–905 | DOI

[95] Schirmer T., “General and specific porins from bacterial outer membranes”, Journal of Structural Biology, 121:2 (1998), 101–109 | DOI

[96] Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C., “Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel”, Science, 282:5397 (1998), 2220–2226 | DOI

[97] Doyle D. A., Cabral J. M., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R., “The structure of the potassium channel: molecular basis of K+ conduction and selectivity”, Science, 280:5360 (1998), 69–77 | DOI

[98] Zhou Y., Morais-Cabral J. H., Kaufman A., MacKinnon R., “Chemistry of ion coordination and hydration revealed by a K+channel-Fab complex at 2.0 A resolution”, Nature, 414:6859 (2001), 43–48 | DOI

[99] Kholmurodov K. (ed.), International Workshop: Molecular Simulation Studies in Material and Biological Sciences, Nova Science Publishers, 2007, 187 pp.

[100] Allen M. P.,Tildesley D. J., Computer Simulation of Liquids, Oxford University Press, 1989, 385 pp.

[101] Kholmogorov K. T., Altaisky M. V., Puzynin I. V., Darden T., Filatov F. P., “Molecular dynamics methods for simulation of physical and biological processes”, Physics of Elementary Particles and Atomic Nuclei, 34:2 (2003)

[102] Shaitan K. V., Tereshkina K. B., Molekulyarnaya dinamika belkov i peptidov, Oikos, 2004, 245 pp.

[103] Poltorak O. M., Termodinamika v fizicheskoi khimii, Vysshaya shkola, 1991, 319 pp.

[104] Nikolskii B. P., Fizicheskaya khimiya. Teoreticheskoe i prakticheskoe rukovodstvo, Khimiya, 1987, 880 pp.

[105] Koneshan S., Rasaiah J., “Computer simulation studies of aqueous sodium chloride solutions at 298$^\circ$ K and 683$^\circ$ K”, The Journal of Chemical Physics, 113:18 (2000), 8125–8137 | DOI

[106] Uchida H., Matsuoka M., “Molecular dynamics simulation of solution structure and dynamics of aqueous sodium chloride solutions from dilute to supersaturated concentration”, Fluid Phase Equilibria, 219:1 (2004), 49–54 | DOI

[107] Koneshan S., Rasaiah J. C., Lynden-Bell R., Lee S., “Solvent structure, dynamics, and ion mobility in aqueous solutions at 25$^\circ$ C”, The Journal of Physical Chemistry B, 102:21 (1998), 4193–4204 | DOI

[108] Kaplan I. G., Vvedenie v teoriyu mezhmolekulyarnykh vzaimodeistvii, Nauka, M., 1982, 312 pp.

[109] Verlet L., “Computer “experiments” on classical fluids. I: Thermodynamical properties of Lennard–Jones molecules”, Physical Review, 159:1 (1967), 98 | DOI

[110] MacKerell A. D., Bashford D., Bellott M., Dunbrack R., Evanseck J., Field M. J., Fischer S., Gao J., Guo H., Ha S. A. et al., “All-atom empirical potential for molecular modeling and dynamics studies of proteins”, The Journal of Physical Chemistry B, 102:18 (1998), 3586–3616 | DOI

[111] Kaminski G. A., Friesner R. A., Tirado-Rives J., Jorgensen W. L., “Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides”, The Journal of Physical Chemistry B, 105:28 (2001), 6474–6487 | DOI

[112] Jorgensen W. L., Maxwell D. S., Tirado-Rives J., “Development and testing of the OPLS AA force field on conformational energetics and properties of organic liquids”, Journal of the American Chemical Society, 118:45 (1996), 11225–11236 | DOI

[113] Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules”, Journal of the American Chemical Society, 117:19 (1995), 5179–5197 | DOI

[114] Riniker S., Christ C. D., Hansen H. S., Hunenberger P. H., Oostenbrink C., Steiner D., van Gunsteren W. F., “Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software”, The Journal of Physical Chemistry B, 115:46 (2011), 13570–13577 | DOI

[115] Hermans J., Berendsen H. J., Van Gunsteren W. F., Postma J. P., “A consistent empirical potential for water-protein interactions”, Biopolymers, 23:8 (1984), 1513–1518 | DOI

[116] Klauda J. B., Venable R. M., Freites J. A., O'Connor J. W., Tobias D. J., Mondragon-Ramirez C., Vorobyov I., MacKerell A. D. (Jr.), Pastor R. W., “Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types”, The Journal of Physical Chemistry B, 114:23 (2010), 7830–7843 | DOI

[117] Liu Y., Chipot C., Shao X., Cai W., “The effects of 7-dehydrocholesterol on the structural properties of membranes”, Physical Biology, 8:5 (2011), 056005 | DOI

[118] Daura X., Mark A. E., Van Gunsteren W. F., “Parametrization of aliphatic CHn united atoms of GROMOS96 force field”, Journal of Computational Chemistry, 19:5 (1998), 535–547 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[119] Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H., “The MARTINI force field: coarse grained model for biomolecular simulations”, The Journal of Physical Chemistry B, 111:27 (2007), 7812–7824 | DOI

[120] Davis R. S., Sunil Kumar P., Sperotto M. M., Laradji M., “Predictions of phase separation in three-component lipid membranes by the MARTINI force field”, The Journal of Physical Chemistry B, 117:15 (2013), 4072–4080 | DOI

[121] Shinoda W., DeVane R., Klein M. L., “Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field”, The Journal of Physical Chemistry B, 114:20 (2010), 6836–6849 | DOI

[122] Tai K., Fowler P., Mokrab Y., Stansfeld P., Sansom M. S., “Molecular modeling and simulation studies of ion channel structures, dynamics and mechanisms”, Methods in Cell Biology, 90 (2008), 233–265 | DOI

[123] Arning K., Mathematical modelling and simulation of ion channels, Radon Institute for Computational and Applied Mathematics, 2009, 139–142

[124] Harder E., MacKerell A. D., Roux B., “Many-body polarization effects and the membrane dipole potential”, Journal of the American Chemical Society, 131:8 (2009), 2760–2761 | DOI

[125] Lamoureux G., Roux B., “Modeling induced polarization with classical drude oscillators: Theory and molecular dynamics simulation algorithm”, The Journal of Chemical Physics, 119 (2003), 3025 | DOI

[126] Piquemal J. P., Perera L., Cisneros G. A., Ren P., Pedersen L. G., Darden T. A., “Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: from energetics to structure”, The Journal of Chemical Physics, 125:5 (2006), 054511–054511 | DOI

[127] Cisneros G. A., Piquemal J. P., Darden T. A., “Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods”, The Journal of Chemical Physics, 125 (2006), 184101–184112 | DOI

[128] Narumi T., Ohno Y., Okimoto N., Koishi T., Suenaga A., Futatsugi N., Yanai R., Himeno R., Fujikawa S., Taiji M., et al., “A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3”, Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, ACM, New York, NY, USA, 2006, 1–13

[129] Kumar S., Huang C., Zheng G., Bohm E., Bhatele A., Phillips J. C., Yu H., Kalé L. V., “Scalable molecular dynamics with NAMD on the IBM Blue Gene/L system”, IBM Journal of Research and Development, 52:1.2 (2008), 177–188 | DOI

[130] Shaw D. E., Deneroff M. M., Dror R. O., Kuskin J. S., Larson R. H., Salmon J. K., Young C., Batson B., Bowers K. J., Chao J. C., et al., “Anton, a special-purpose machine for molecular dynamics simulation”, Communications of the ACM, 51:7 (2008), 91–97 | DOI

[131] Dror R. O., Jensen M. O., Borhani D. W., Shaw D. E., “Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations”, The Journal of General Physiology, 135:6 (2010), 555–562 | DOI

[132] Pierce L. C., Salomon-Ferrer R., Augusto F. de Oliveira C., McCammon J. A., Walker R. C., “Routine access to millisecond time scale events with accelerated molecular dynamics”, Journal of Chemical Theory and Computation, 8:9 (2012), 2997–3002 | DOI

[133] Law R. J., Henchman R. H., McCammon J. A., “A gating mechanism proposed from a simulation of a human $\alpha-7$ nicotinic acetylcholine receptor”, Proceedings of the National Academy of Sciences of the United States of America, 102:19 (2005), 6813–6818 | DOI

[134] Capener C. E., Shrivastava I. H., Ranatunga K. M., Forrest L. R., Smith G. R., Sansom M. S., “Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel”, Biophysical Journal, 78:6 (2000), 2929–2942 | DOI

[135] Gaffney K., Chapman H., “Imaging atomic structure and dynamics with ultrafast X-ray scattering”, Science, 316:5830 (2007), 1444–1448 | DOI

[136] Balescu R., Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley, 1975, 742 pp. | Zbl

[137] Evans L., An Introduction to Stochastic Differential Equations, American Mathematical Society, 2013, 133 pp.

[138] Stepanov S. S, Stokhasticheskii mir, elektronnaya kniga, , 2012, 376 pp. (data obrascheniya 11.02.2014) http://synset.com/pdf/ito.pdf

[139] Einstein A., “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Annalen der physik, 322:8 (1905), 549–560 | DOI

[140] Turchenkov D. A., Turchenkov M. A., “Analiz uproscheniya raznostnykh skhem dlya uravneniya Lanzhevena, vliyanie ucheta korrelyatsii priraschenii”, Kompyuternye issledovaniya i modelirovanie, 4 (2012), 325–338

[141] Pusey P. N., “Brownian motion goes ballistic”, Science, 332:6031 (2011), 802–803 | DOI

[142] Turq P., Lantelme F., Friedman H. L., “Brownian dynamics: Its application to ionic solutions”, The Journal of Chemical Physics, 66:7 (1977), 3039–3044 | DOI

[143] Gunsteren W., Berendsen H., “Algorithms for Brownian dynamics”, Molecular Physics, 45:3 (1982), 637–647 | DOI

[144] March N., Tosi P., Introduction to Liquid State Physics, World Scientific, 2002, 300 pp.

[145] Song C., Corry B., “Ion conduction in ligand-gated ion channels: Brownian dynamics studies of four recent crystal structures”, Biophysical Journal, 98:3 (2010), 404–411 | DOI

[146] Krishnamurthy V., Chung S. H., “Large-scale dynamical models and estimation for permeation in biological membrane ion channels”, Proceedings of the IEEE, 95:5 (2007), 853–880 | DOI

[147] Singer A., Schuss Z., “Brownian simulations and unidirectional flux in diffusion”, Physical Review E, 71:2 (2005), 026115–026122 | DOI

[148] Chung S. H., Allen T. W., Hoyles M., Kuyucak S., “Permeation of ions across the potassium channel: Brownian dynamics studies”, Biophysical Journal, 77:5 (1999), 2517–2533 | DOI

[149] Li S. C., Hoyles M., Kuyucak S., Chung S. H., “Brownian dynamics study of ion transport in the vestibule of membrane channels”, Biophysical Journal, 74:1 (1998), 37–47 | DOI

[150] Barthel J., Bachhuber K., Buchner R., Hetzenauer H., “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols”, Chemical Physics Letters, 165:4 (1990), 369–373 | DOI

[151] Kimura Y., Ikegami A., “Local dielectric properties around polar region of lipid bilayer membranes”, The Journal of Membrane Biology, 85:3 (1985), 225–231 | DOI

[152] Plant A. L., Gueguetchkeri M., Yap W., “Supported phospholipid/alkanethiol biomimetic membranes: insulating properties”, Biophysical Journal, 67:3 (1994), 1126–1133 | DOI

[153] Gillespie D., Boda D., “The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity”, Biophysical Journal, 95:6 (2008), 2658–2672 | DOI

[154] Schutz C. N., Warshel A., What are the dielectric “constants” of proteins and how to validate electrostatic models?, Proteins: Structure, Function, and Bioinformatics, 44:4 (2001), 400–417 | DOI

[155] Erdey-Grúz T., Transport Phenomena in Aqueous Solutions, Willey, 1974, 512 pp.

[156] Yang Z. Z., Li X., “Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field”, The Journal of Physical Chemistry A, 109:16 (2005), 3517–3520 | DOI

[157] Obst S., Bradaczek H., “Molecular dynamics study of the structure and dynamics of the hydration shell of alkaline and alkaline-earth metal cations”, The Journal of Physical Chemistry, 100:39 (1996), 15677–15687 | DOI

[158] Nightingale E. R., “Phenomenological theory of ion solvation. Effective radii of hydrated ions”, The Journal of Physical Chemistry, 63:9 (1959), 1381–1387 | DOI

[159] Chen J. H., Adelman S. A., “Macroscopic model for solvated ion dynamics”, The Journal of Chemical Physics, 72:4 (1980), 2819–2831 | DOI

[160] Barthel J., Bachhuber K., Buchner R., Hetzenauer H., “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols”, Chemical Physics Letters, 165:4 (1990), 369–373 | DOI

[161] Bollinger J. C., Yvernault T., “Ionic solvation from conductivity data: Application and extension of the Chen–Adelman model”, Journal of Solution Chemistry, 14 (1985), 605–619 | DOI

[162] Turchenkov D., Boronovsky S., Nartsissov Y., “Model of ion diffusion in synaptic cleft based on stochastical integration of Langevin equation at dielectric friction approximation”, Biophysics, 58:6 (2013), 796–803 | DOI

[163] Lee S. H., Rasaiah J. C., “Molecular dynamics simulati on of ionic mobility. I: Alkalimetal cations in water at 25$^\circ$ C”, The Journal of Chemical Physics, 101:8 (1994), 6964–6974 | DOI

[164] Im W., Roux B., “Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory”, Journal of Molecular Biology, 322:4 (2002), 851–869 | DOI

[165] Marreiro D., Saraniti M., Aboud S., “Brownian dynamics simulation of charge transport in ion channels”, Journal of Physics: Condensed Matter, 19:21 (2007), 215203 | DOI

[166] Ohshima H., “Potential and Charge of a Hard Particle”, Biophysical Chemistry of Biointerfaces, 1–46

[167] Fogolari F., Brigo A., Molinari H., “The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology”, Journal of Molecular Recognition, 15:6 (2002), 377–392 | DOI

[168] D'yachkov L., “Analytical solution of the Poisson–Boltzmann equation in cases of spherical and axial symmetry”, Technical Physics Letters, 31:3 (2005), 204–207 | DOI

[169] Liu X., Li H., Li R., Tian R., “Analytical solutions of the nonlinear Poisson–Boltzmann equation in mixture of electrolytes”, Surface Science, 607 (2013), 197–202 | DOI

[170] Schoch R. B., Han J., Renaud P., “Transport phenomena in nanofluidics”, Rev. Mod. Phys., 80 (2008), 839–883 | DOI

[171] O'Brien E. P., Dima R. I., Brooks B., Thirumalai D., “Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism”, Journal of the American Chemical Society, 129:23 (2007), 7346–7353 | DOI

[172] Sabarinathan R., Aishwarya K., Sarani R., Vaishnavi M. K., Sekar K., “Water-mediated ionic interactions in protein structures”, Journal of Biosciences, 36:2 (2011), 253–263 | DOI

[173] Maffeo C., Schöpflin R., Brutzer H., Stehr R., Aksimentiev A., Wedemann G., Seidel R., “DNA-DNA nnteractions in tight supercoils are described by a small effective charge density”, Physical Review Letters, 105 (2010), 158101–158112 | DOI

[174] Jogini V., Roux B., “Electrostatics of the intracellular vestibule of K+ channels”, Journal of Molecular Biology, 354:2 (2005), 272–288 | DOI

[175] Corry B., Kuyucak S., Chung S. H., “Dielectric self-energy in Poisson–Boltzmann and Poisson–Nernst–Planck models of ion channels”, Biophysical Journal, 84:6 (2003), 3594–3606 | DOI

[176] Noskov S. Y., Im W., Roux B., “Ion permeation through the $\alpha$-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson–Nernst–Plank electrodiffusion theory”, Biophysical Journal, 87:4 (2004), 2299–2309 | DOI

[177] Grabe M., Lecar H., Jan Y. N., Jan L. Y., “A quantitative assessment of models for voltage-dependent gating of ion channels”, Proceedings of the National Academy of Sciences of the United States of America, 101:51 (2004), 17640–17645 | DOI

[178] Roux B., Allen T., Berneche S., Im W., “Theoretical and computational models of biological ion channels”, Quarterly Reviews of Biophysics, 37:01 (2004), 15–103 | DOI

[179] Aguilella V. M., Queralt-Martín M., Aguilella-Arzo M., Alcaraz A., “Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity”, Integrative Biology, 3:3 (2011), 159–172 | DOI

[180] Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., “Electrostatics of nanosystems: application to microtubules and the ribosome”, Proceedings of the National Academy of Sciences, 98:18 (2001), 10037–10041 | DOI

[181] Rocchia W., Alexov E., Honig B., “Extending the applicability of the nonlinear Poisson–Boltzmann equation: Multiple dielectric constants and multivalent ions”, The Journal of Physical Chemistry B, 105:28 (2001), 6507–6514 | DOI

[182] Coalson R. D., Kurnikova M. G., “Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels”, NanoBioscience, 4:1 (2005), 81–93 | DOI

[183] Moy G., Corry B., Kuyucak S., Chung S. H., “Tests of continuum theories as models of ion channels. I. Poisson- Boltzmann theory versus Brownian dynamics”, Biophysical Journal, 78:5 (2000), 2349–2363 | DOI

[184] Kuyucak S., Bastug T., “Physics of ion channels”, Journal of Biological Physics, 29:4 (2003), 429–446 | DOI

[185] Gillespie D., Nonner W., Eisenberg R. S., “Density functional theory of charged, hard-sphere fluids”, Physical Review E, 68:3 (2003), 031503 | DOI

[186] Roth R., “Fundamental measure theory for hard-sphere mixtures: a review”, Journal of Physics: Condensed Matter, 22:6 (2010), 063102 | DOI

[187] Simakov N. A., Kurnikova M. G., “Soft wall ion channel in continuum representation with application to modeling ion currents in $\alpha$-hemolysin”, The Journal of Physical Chemistry B, 114:46 (2010), 15180–15190 | DOI

[188] Koch W., Holthausen M. C., A Chemist's Guide to Density Functional Theory, Wiley-VCH, 2001, 313 pp.

[189] Gonze X., Beuken J. M., Caracas R., Detraux F., Fuchs M., Rignanese G. M., Sindic L., Verstraete M., Zerah G., Jollet F., et al., “First-principles computation of material properties: the ABINIT software project”, Computational Materials Science, 25:3 (2002), 478–492 | DOI

[190] O'Boyle N. M., Tenderholt A. L., Langner K. M., “cclib: A library for package-independent computational chemistry algorithms”, Journal of Computational Chemistry, 29:5 (2008), 839–845 | DOI

[191] Froimowitz M., “HyperChem: a software package for computational chemistry and molecular modeling”, Biotechniques, 14:6 (1993), 1010–1013

[192] Castro A., Appel H., Oliveira M., Rozzi C. A., Andrade X., Lorenzen F., Marques M., Gross E., Rubio A., “A tool for the application of time-dependent density functional theory”, Physica Status Solidi (b), 243:11 (2006), 2465–2488 | DOI

[193] Kohn W., Sham L. J., “Self-consistent equations including exchange and correlation effects”, Physical Review, 140 (1965), 1133–1138 | DOI

[194] Blatov V. A., Shevchenko A. P., Peresypkina E. V., Poluempiricheskie raschetnye metody kvantovoi khimii, Univers-grupp, 2005, 32 pp.

[195] Sadlej J., Semi-Empirical Methods of Quantum Chemistry: CNDO, INDO, NDDO, Polish Scientific Publ., 1985, 386 pp.

[196] Pople J. A., Beveridge D. L., Approximate Molecular Orbital Theory, McGraw-Hill, 1970, 230 pp.

[197] Aruldhas G., Quantum Mechanics, Prentice-Hall Of India Pvt., 2008, 506 pp.

[198] Krogh-Jespersen K., The Intermediate Neglect of Differential Overlap (Indo) Model Hamiltonian and Its Application to Certain Ground- and Excited- State Properties of Organic Molecules, Graduate School of Arts and Science, New York, 1976, 202 pp.

[199] Anderson C. P., A Modification of the Intermediate Neglect of Differential Overlap Procedure for Interpretation of Photoelectron Spectra and the Photoelectron Spectra of Some Halogen Containing Compounds, University of Tennessee, USA, 1973, 74 pp.

[200] Bystrov V. S., Paramonova E. V., Bdikin I. K., Bystrova A. V., Pullar R. C., Kholkin A. L., “Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly (vinylidene fluoride, PVDF)”, Journal of Molecular Modeling, 2013, 1–12

[201] Stewart J., “Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements”, Journal of Molecular Modeling, 13:12 (2007), 1173–1213 | DOI

[202] Hostaš J., Řezáč J., Hobza P., “On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions”, Chemical Physics Letters, 2013, 161–166 | DOI