3D Modeling and Animation of Visceral Skeleton Fish: Testing Four-Bar Mechanisms
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 513-519.

Voir la notice de l'article provenant de la source Math-Net.Ru

As a result of the application of computer technology on the basis of the analysis of computed tomography images were created 3D-model of visceral skeleton of fish. Three-dimensional object is aligned with the modified kinematic system of four-bar mechanism, allowing to simulate and test possible movements of jaw bones.
@article{MBB_2013_8_2_a9,
     author = {Yu. P. Tolmacheva and E. A. Dolid and S. U. Petukhov and V. P. Pashkov and A. A. Pykhalov},
     title = {3D {Modeling} and {Animation} of {Visceral} {Skeleton} {Fish:} {Testing} {Four-Bar} {Mechanisms}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {513--519},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a9/}
}
TY  - JOUR
AU  - Yu. P. Tolmacheva
AU  - E. A. Dolid
AU  - S. U. Petukhov
AU  - V. P. Pashkov
AU  - A. A. Pykhalov
TI  - 3D Modeling and Animation of Visceral Skeleton Fish: Testing Four-Bar Mechanisms
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 513
EP  - 519
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a9/
LA  - ru
ID  - MBB_2013_8_2_a9
ER  - 
%0 Journal Article
%A Yu. P. Tolmacheva
%A E. A. Dolid
%A S. U. Petukhov
%A V. P. Pashkov
%A A. A. Pykhalov
%T 3D Modeling and Animation of Visceral Skeleton Fish: Testing Four-Bar Mechanisms
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 513-519
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a9/
%G ru
%F MBB_2013_8_2_a9
Yu. P. Tolmacheva; E. A. Dolid; S. U. Petukhov; V. P. Pashkov; A. A. Pykhalov. 3D Modeling and Animation of Visceral Skeleton Fish: Testing Four-Bar Mechanisms. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 513-519. http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a9/

[1] Martin R. B., Burr N. A., Sharkey Skeletal tissue mechanics, Springer-Verlag, New York, 1998, 392 pp.

[2] Cowin S. C., “Wolff's law of trabecular architecture at remodeling equilitrium”, J. Biomech. Eng., 108:1 (1986), 83–88 | DOI

[3] Symanovskaya E. Y., Bolotova M. Ph., Nyashin Y. I., “Mechanical pressure as generator of grouth, development and formation of the dentofacial system”, Russian Journal of Biomechanics, 3 (2001), 3–11

[4] Fagan M. J., Julian S., Siddall D. J., Mohsen A., “Patient-specific spine models. 1: Finite element analysis of the lumbar intervertebral disc — a material sensitivity study”, Proc. IMEH J. Eng. Med., 216 (2002), 299–314 | DOI

[5] Richmond B. G., Wright W., Grosse I., Dechow P. C., Ross C., Spencer M., Strait D., “Finite element analysis in functional morphology”, Anat. Rec., 283 (2005), 259–274 | DOI

[6] Curtis N. K., Kupczik M. J., Fagan D., “Finite element modelling of the cat skull”, Journal of Morphology, 268 (2007), 1053

[7] Kupczik K., “Virtual biomechanics: basic concepts and technical aspects of finite element analysis in vertebrate morphology”, Journal of Anthropological Sciences, 86 (2008), 193–198

[8] Kupczik K., “Finite element analysis of craniofacial morphology in primates”, Bulletin der Schweizerischen Gesellschaft für Anthropologie, 14 (2009), 40–48

[9] Werneburg I., Hertwig St., “Head Morphology of the Ricefish, Oryzias latipes (Teleostei: Beloniformes)”, Journal of morphology, 270 (2009), 1095–1106 | DOI

[10] O'Higgins P., Fitton L., Phillips R., Shi J. F., Liu J., Groening F., Cobb S. N., Fagan M. J., “Virtual functional morphology: novel approaches to the study of craniofacial form and function”, Evolutionary Biology, 2009

[11] Pashkov V. P., Zotov I. N., Pykhalov A. A., “Pre-protsessornyi i inzhenernyi analiz ob'ektov so svoistvami anizotropii materialov”, Vestnik IrGTU, 48:1 (2011), 34–39

[12] Tolmacheva Yu. P., Pachkov V. P., Pyhalov A. A., “Creation 3d Solid-State Model of The Maxillary Device of Fishes”, International Journal of Applied and Fundamental Research, 8 (2012), 14–16

[13] Osse J. W., “Functional morphology of the head of the perch (Perca fluviatilis): An electromyographic study”, Neth. J. Zool., 10 (1969), 289–392

[14] Anker G. Ch., “Morphology and kinetics of the stickleback, Gasterosteus aculeatus”, Trans. Zool. Soc. (London), 32 (1974), 311–416 | DOI

[15] Lauder G. V., “Evolution of the feeding mechanism in primitive actinopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia”, J. Morph., 163 (1980), 283–317 | DOI

[16] Lauder G. V., “Intraspecific functional repertoires in the feeding mechanism of the characoid fishes Lebiasina, Hoplias and Chalceus”, Copeia, 1981, 154–168 | DOI

[17] Liem K. F., “Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlids”, J. Morph., 158 (1978), 323–360 | DOI

[18] Liem K. F., “Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes”, Amer. Zool., 20 (1980), 295–314

[19] Westneat M. W., “Feeding mechanics of teleost fishes (Labridae: Perciformes): A test of four-bar linkage models”, J. Morph., 205 (1990), 269–295 | DOI

[20] Westneat M. W., “A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes”, J. Theoretical Biology, 223 (2003), 269–281 | DOI | MR

[21] Westneat M. W., “Evolution of levers and linkages in the feeding mechanisms of fishes”, Integrative and Comparative Biology, 44 (2004), 378–389 | DOI

[22] Dobben W. N., “Uber der Kiefermechanismus der Knochenfishe”, Archiv neerland. Zoolog., 50 (1935), 1–72