Applying Principal Component Analysis for Macromolecular Objects Diffraction Images Sorting
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 708-715.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a method for fast detection of images containing diffraction patterns of specific macromolecular objects. Our method is based on a principal component analysis, a popular method used in a various areas to analyse multi-dimensional data like image classification, noise reduction, video indexing and etc. In our paper we demonstrate that our method is efficient for diffraction images classification for various macromolecular structures containing collagen. Diffraction data was gathered from Kurchatov synchrotron radiation source.
@article{MBB_2013_8_2_a14,
     author = {A. B. Teslyuk and R. A. Senin and V. A. Ilyin},
     title = {Applying {Principal} {Component} {Analysis} for {Macromolecular} {Objects} {Diffraction} {Images} {Sorting}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {708--715},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a14/}
}
TY  - JOUR
AU  - A. B. Teslyuk
AU  - R. A. Senin
AU  - V. A. Ilyin
TI  - Applying Principal Component Analysis for Macromolecular Objects Diffraction Images Sorting
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 708
EP  - 715
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a14/
LA  - ru
ID  - MBB_2013_8_2_a14
ER  - 
%0 Journal Article
%A A. B. Teslyuk
%A R. A. Senin
%A V. A. Ilyin
%T Applying Principal Component Analysis for Macromolecular Objects Diffraction Images Sorting
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 708-715
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a14/
%G ru
%F MBB_2013_8_2_a14
A. B. Teslyuk; R. A. Senin; V. A. Ilyin. Applying Principal Component Analysis for Macromolecular Objects Diffraction Images Sorting. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 708-715. http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a14/

[1] DiMauro L. F., Arthur J., Berrah N., Bozek J., Galayda J. N., Hastings J., “Progress report on the LCLS XFEL at SLAC”, J. Phys.: Conf. Ser., 88 (2007), 012058 | DOI

[2] “RIKEN. First X-ray lasing of SACLA: Next-generation facility up and running with powerful new X-ray laser”, ScienceDaily, 2011 (data obrascheniya: 16.12.2013) http://www.sciencedaily.com/releases/2011/06/110613053815.htm

[3] European X-Ray Free-Electron Laser tunnel construction completed, , Phys.org: web-based science, research and technology news service, 2012 (data obrascheniya: 16.12.2013) http://phys.org/news/2012-06-european-x-ray-free-electron-laser-tunnel.html

[4] Chapman H. N., Fromme P., Barty A., White T. A., Kirian R. A., Aquila A., Hunter M. S., Schulz J., DePonte D. P., Weierstall U. et al., “Femtosecond X-ray protein nanocrystallography”, Letters to Nature, 470 (2011), 73–78 | DOI

[5] Youngman C., “Data acquisition and Controls”, XFEL Users' Meeting, , 2012 (data obrascheniya: 16.12.2013) http://www.xfel.eu/sites/site_xfel-gmbh/content/e63594/e65073/e126274/e134393/3Youngman_DataAcquisitionandControls_eng.pdf

[6] Mancuso A. P., Aquila A., Borchers G., Giewekemeyer K., Reimers N., Scientific Instrument Single Particles, Clusters, and Biomolecules (SPB), Technical Design Report, , 2013 (data obrascheniya: 16.12.2013) https://docs.xfel.eu/alfresco/d/a/workspace/SpacesStore/497

[7] Pearson K., “On lines and planes of closest fit to systems of points in space”, Philosophical Magazine, 2 (1901), 559–572 | DOI

[8] Oddershede J., Nielsen K., Stahl K., “Using X-ray powder diffraction and principal component analysis to determine structural properties for bulk samples of multiwall carbon nanotubes”, Zeitschrift für Kristallographie, 222 (2007), 186–192 | DOI

[9] Bosco J. P. da Silva, Ramos M. N., “Principal Component Analysis of Molecular Geometries of Cis- and Trans-C2H2X2”, J. Braz. Chem. Soc., 15:1 (2004), 43–49

[10] Li W., Zhong Y., Yu D., Qu D., Sun B., Li M., Liu J., “Application of principal component analysis for identification of drugs packed in anthropomorphic phantom”, ARPN Journal of Engineering and Applied Sciences, 7:7 (2012), 915–921

[11] Yata M., Yoshida C., Fujisawa S., Mizuta S., Yoshinaka R., “Identification and characterization of molecular species of collagen in fish skin”, Journal of Food Science, 66 (2011), 247–251 | DOI

[12] Cintron C., Hong B. S., Covington H. I., Macarak E. J., “Heterogeneity of collagens in rabbit cornea: type III collagen”, Invest. Ophthalmol. Vis. Sci., 29:5 (1988), 767–775

[13] Bornstein P., Sage H., “Structurally distinct collagen types”, Annual review of biochemistry, 49 (1980), 957–1003 | DOI

[14] Altarelli M., Kurta R., Vartanyants I. A., “X-ray cross-correlation analysis and local symmetries of disordered systems: General theory”, Phys. Rev. B, 82:10 (2010), 104207 | DOI

[15] Kurta R. P., Ostrovskii B. I., Singer A., Gorobtsov O. Y., Shabalin A., Dzhigaev D., Yefanov O. M., Zozulya A. V., Sprung M., Vartanyants I. A., “X-ray cross-correlation analysis of liquid crystal membranes in the vicinity of the hexatic-smectic phase transition”, Phys. Rev. E, 88 (2013), 044501 | DOI

[16] Kurta R. P., Dronyak R., Altarelli M., Weckert E., Vartanyants I. A., “Solution of the phase problem for coherent scattering from a disordered system of identical particles”, New J. Phys., 15 (2013), 013059 | DOI