On the Mathematical Modeling of the Evolutionary Processes in the Microbial World
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 350-372.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the concept of the microbial world as fundamental, relative solitary and quick-evolving a subsystem of the biosphere. A generalized mathematical model of the microbial evolution under continuous-flow conditions is considered. The method of parametric and phase portraits is used for investigation of some special cases of this generalized model.
@article{MBB_2013_8_1_a18,
     author = {Y. M. Aponin and E. A. Aponina},
     title = {On the {Mathematical} {Modeling} of the {Evolutionary} {Processes} in the {Microbial} {World}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {350--372},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a18/}
}
TY  - JOUR
AU  - Y. M. Aponin
AU  - E. A. Aponina
TI  - On the Mathematical Modeling of the Evolutionary Processes in the Microbial World
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 350
EP  - 372
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a18/
LA  - ru
ID  - MBB_2013_8_1_a18
ER  - 
%0 Journal Article
%A Y. M. Aponin
%A E. A. Aponina
%T On the Mathematical Modeling of the Evolutionary Processes in the Microbial World
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 350-372
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a18/
%G ru
%F MBB_2013_8_1_a18
Y. M. Aponin; E. A. Aponina. On the Mathematical Modeling of the Evolutionary Processes in the Microbial World. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 350-372. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a18/

[1] Promyshlennaya mikrobiologiya i uspekhi geneticheskoi inzhenerii, Mir, M., 1984, 176 pp.

[2] Sovremennaya mikrobiologiya. Prokarioty, V 2-kh tomakh, Mir, M., 2005, 1152 pp. | Zbl

[3] Schelkunov S. N., Geneticheskaya inzheneriya, Sib. universitetskoe izd-vo, Novosibirsk, 2004, 496 pp.

[4] Aponin Yu. M., Aponina E. A., “O nekotorykh usloviyakh ustoichivogo podderzhaniya nestabilnykh plazmid v mikrobnykh populyatsiyakh pri dlitelnom nepreryvnom kultivirovanii”, Issledovaniya po matematicheskoi biologii, ed. E. E. Shnol, ONTI PNTs RAN, Puschino, 1996, 32–48

[5] Zavarzin G. A., Lektsii po prirodovedcheskoi mikrobiologii, Nauka, M., 2003, 348 pp.

[6] Galimov E. M., “Chto takoe zhizn? Vmesto vvedeniya”, Problemy zarozhdeniya i evolyutsii biosfery, ed. E. M. Galimov, Knizhnyi dom «LIBROKOM», M., 2008, 9–19

[7] Arutyunov V. S., Strekova L. N., Stupeni evolyutsii: evolyutsionnaya kontseptsiya prirody i tsivilizatsii, Nauka, M., 2006, 347 pp. | Zbl

[8] Zavarzin G. A., Evolyutsiya prokariotnoi biosfery: «Mikroby v krugovorote zhizni». 120 let spustya: Chtenie im. S. N. Vinogradskogo, MAKS Press, M., 2011, 144 pp.

[9] Pechurkin N. S., Terskov I. A., Analiz kinetiki rosta i evolyutsii mikrobnykh populyatsii (v upravlyaemykh usloviyakh), Nauka, Novosibirsk, 1975, 216 pp.

[10] Pechurkin N. S., Populyatsionnaya mikrobiologiya, Nauka, Novosibirsk, 1978, 278 pp.

[11] Pechurkin N. S., Brilkov A. V., Marchenkova T. V., Populyatsionnye aspekty biotekhnologii, Nauka, Novosibirsk, 1990, 173 pp.

[12] Moser H., “Structure and dynamics of bacterial populations maintained in the chemostat”, Gold Spring Harbor Symposia on quantitative biology, 22 (1957), 121–137 | DOI

[13] Novick A., Szilard L., “Experiments with the chemostat on spontaneous mutations of bacteria”, Proc. Nat. Acad. Sci. USA, 36 (1950), 708–719 | DOI

[14] Aponin Yu. M., Aponina E. A., “Matematicheskoe modelirovanie evolyutsii bakterialnoi populyatsii v nepreryvnoi kulture s uchetom nemutatsionnoi izmenchivosti genoma”, Biofizika, 53:4 (2008), 638–645

[15] Aponin Yu. M., Aponina E. A., “Printsip invariantnosti La-Sallya i matematicheskie modeli evolyutsii mikrobnykh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 3:2 (2011), 177–190

[16] Stewart F. M., Levin B. R., “The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors”, Genetics, 87:2 (1977), 209–228 | MR

[17] Aponin Yu. M., Populyatsionnaya dinamika bakterialnykh plazmid v usloviyakh khemostatnogo kultivirovaniya, Preprint Nauchno-issledovatelskogo vychislitelnogo tsentra AN SSSR, ONTI NTsBI AN SSSR, Puschino, 1982, 18 pp.

[18] Aponin Yu. M., Aponina E. A., Velkov V. V., Kineticheskie koeffitsienty plazmid i metodologiya konstruirovaniya rekombinantnykh DNK, Preprint Nauchno-issledovatelskogo vychislitelnogo tsentra AN SSSR, ONTI NTsBI AN SSSR, Puschino, 1984, 12 pp. | MR

[19] Aponin Yu. M., Aponina E. A., Velkov V. V., Matematicheskoe modelirovanie protsessov nepreryvnogo kultivirovaniya mikroorganizmov, soderzhaschikh nestabilnye gibridnye plazmidy, Preprint Nauchno-issledovatelskogo vychislitelnogo tsentra AN SSSR, ONTI NTsBI AN SSSR, Puschino, 1984, 21 pp. | MR

[20] Aponin Yu. M., Aponina E. A., “Matematicheskoe modelirovanie evolyutsii bakterialnykh populyatsii v usloviyakh dlitelnogo nepreryvnoprotochnogo kultivirovaniya”, Sinergetika v estestvennykh naukakh, Shestye Kurdyumovskie chteniya, Tverskoi gos. un-t, Tver, 2010, 26–29

[21] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982, 332 pp. | MR | Zbl

[22] Gurevich Yu. L., “Kachestvennyi analiz struktury geterogennoi populyatsii bakterii”, Analiz rosta populyatsii biofizicheskimi metodami, ed. I. I. Gitelzon, Nauka, Novosibirsk, 1984, 22–31

[23] Pliss V. A., Nelokalnye problemy teorii kolebanii, Nauka, M.–Leningrad, 1964, 368 pp. | MR

[24] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[25] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980, 302 pp. | MR

[26] Krasnoselskii M. A., Operator sdviga po traektoriyam obyknovennykh differentsialnykh uravnenii, Nauka, M., 1966, 332 pp. | MR

[27] Leonov G. A., Khaoticheskaya dinamika i klassicheskaya teoriya ustoichivosti dvizheniya, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 168 pp.

[28] Steinier R., Edelberg E., Ingrem Dzh., Mir mikrobov, V 3-kh tomakh, Mir, M., 1979, 114 pp.

[29] Dwivedi C. P., Imanaka T., Aiba S., “Instabiliti of plasmid-harboring strains of E-coli in continuous culture”, Biotechnology and Bioengineering, 24:6 (1982), 1465–1468 | DOI

[30] Aponin Yu. M., Aponina E. A., “Metod parametricheskikh i fazovykh portretov v zadachakh nelineinoi dinamiki mikrobnykh populyatsii”, Sb. nauchnykh tezisov, v. 1, Matematika. Kompyuter. Obrazovanie, 16, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2009, 66

[31] Aponin Yu. M., “K issledovaniyu matematicheskikh modelei prosteishikh iskusstvennykh ekosistem na protoke”, Matematicheskaya teoriya biologicheskikh protsessov, ed. A. K. Prits, Kaliningradskaya pravda, Kaliningrad, 1976, 76–78

[32] Aponin Yu. M., Aponina E. A., Vanyakin E. N., Matematicheskoe modelirovanie protsessov nepreryvnogo kultivirovaniya s uchetom geterogennosti mikrobnykh populyatsii, Preprint Nauchno-issledovatelskogo vychislitelnogo tsentra AN SSSR, ONTI NTsBI AN SSSR, Puschino, 1989, 32 pp. | MR

[33] Velkov V. V., “Nestabilnost rekombinantnykh molekul”, Genetika, 19:10 (1983), 1573–1581

[34] Koizumi J.-I., Aiba S., “Oscillatory Behavior of Population Density in Continuous Culture of Genetic-Engineered Bacillus stearothermophilus”, Biotechnology and Bioengineering, 34 (1989), 750–754 | DOI

[35] Aponin Yu. M., Aponina E. A., “Ierarkhiya modelei matematicheskoi biologii i chislenno-analiticheskie metody ikh issledovaniya”, Matematicheskaya biologiya i bioinformatika, 2:2 (2007), 347–360 (data obrascheniya: 28.05.2013) http://www.matbio.org/downloads/Aponin2007(2_347).pdf

[36] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984, 304 pp. | MR

[37] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2011, 560 pp.

[38] Kolmogoroff A. N., “Sulla teoria di Volterra della lotta per l'esistenza”, G. Ist. ital. attuar., 7 (1936), 74–80

[39] Kolmogorov A. N., “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 25:2 (1972), 101–106 | Zbl

[40] Shestakov A. A., Obobschennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami, KomKniga, M., 2007, 320 pp. | MR

[41] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR

[42] Aponina E. A., Aponin Yu. M., Kreitser G. P., Shnol E. E., Predelnye tsikly sistemy dvukh differentsialnykh uravnenii, ONTI NTsBI AN SSSR, Puschino, 1974, 45 pp.

[43] Aponin Yu. M., Aponina E. A., Separatrisy sistemy dvukh differentsialnykh uravnenii, ONTI NTsBI AN SSSR, Puschino, 1976, 36 pp.