Coordination of Cell Growth and DNA Replication: A Mathematical Model
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 66-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the modeling study of prokaryotic cell cycle are demonstrated. The mathematical models implementing different strategies to regulate initiation of DNA replication and growth of the cell are developed taking into account the problem of coordination of these processes. It has been shown that the solution of the problem depends on the laws of cell growth. For the cells whose growth obeys an exponential law, coordination between cell growth and DNA replication can be achieved through the mechanisms of negative regulation of replication initiation of repressor’ type. In the models that implement the linear law of cell growth, there is an automatic fitting to the rate of cell growth under a given rate of replication. In this sense, in the cells growing in a linear manner, the coordination problem for these processes does not exist.
@article{MBB_2013_8_1_a11,
     author = {V. A. Likhoshvai and T. M. Khlebodarova},
     title = {Coordination of {Cell} {Growth} and {DNA} {Replication:} {A} {Mathematical} {Model}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {66--92},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a11/}
}
TY  - JOUR
AU  - V. A. Likhoshvai
AU  - T. M. Khlebodarova
TI  - Coordination of Cell Growth and DNA Replication: A Mathematical Model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 66
EP  - 92
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a11/
LA  - ru
ID  - MBB_2013_8_1_a11
ER  - 
%0 Journal Article
%A V. A. Likhoshvai
%A T. M. Khlebodarova
%T Coordination of Cell Growth and DNA Replication: A Mathematical Model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 66-92
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a11/
%G ru
%F MBB_2013_8_1_a11
V. A. Likhoshvai; T. M. Khlebodarova. Coordination of Cell Growth and DNA Replication: A Mathematical Model. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 66-92. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a11/

[1] Pritchard R. H., Barth P. T., Collins J., “Control of DNA synthesis in bacteria”, Microbial Growth, Symposium of Society of General Microbiology, 19, 1969, 263–297

[2] Mackiewicz P., Zakrzewska-Czerwinska J., Zawilak A., Dudek M. R., Cebrat S., “Where does bacterial replication start? Rules for predicting the oriC region”, Nucleic Acids Res., 32 (2004), 3781–3791 | DOI

[3] Kaguni J. M., “DnaA: controlling the initiation of bacterial DNA replication and more”, Annu. Rev. Microbiol., 60 (2006), 351–375 | DOI

[4] Cooper S., Helmstetter C. E., “Chromosome Replication and the Division Cycle of Escherichia coli B/r”, J. Mol. Biol., 31 (1968), 619–644 | DOI

[5] Donachie W. D., “Relationship between cell size and time of initiation of DNA replication”, Nature, 219 (1968), 1077–1079 | DOI

[6] Zaritsky A., Vischer N., Rabinovitch A., “Changes of initiation mass and cell dimensions by the 'eclipse'”, Mol. Microbiol., 63 (2007), 15–21 | DOI

[7] Zaritsky A., Wang P., Vischer N. O., “Instructive simulation of the bacterial cell division cycle”, Microbiology, 157 (2011), 1876–1885 | DOI

[8] Sompayrac L., Maaloe O., “Autorepressor model for control of DNA replication”, Nat. New Biol., 241:109 (1973), 133–135 | DOI

[9] Margalit H., Grover N. B., “Initiation of chromosome replication in bacteria: analysis of an inhibitor control model”, J. Bacteriol., 169 (1987), 5231–5240

[10] Mahaffy J. M., Zyskind J. W., “A model for the initiation of replication in Escherichia coli”, J. Theor. Biol., 140:4 (1989), 453–477 | DOI

[11] Hansen F. G., Christensen B. B., Atlung T., “The initiator titration model: computer simulation of chromosome and minichromosome control”, Res. Microbiol., 142 (1991), 161–677 | DOI

[12] Donachie W. D., Blakely G. W., “Coupling the initiation of chromosome replication to cell size in Escherichia coli”, Curr. Opin. Microbiol., 6:2 (2003), 146–150 | DOI

[13] Grant M. A., Saggioro C., Ferrari U., Bassetti B., Sclavi B., Cosentino Lagomarsino M., “DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate”, BMC Syst. Biol., 5 (2011), 201 | DOI | MR

[14] Zhang Q., Shi H., “Coupling chromosomal replication to cell growth by the initiator protein DnaA in Escherichia coli”, J. Theor. Biol., 314 (2012), 164–172 | DOI

[15] Schaechter M., Maaloe O., Kjeldgaard N. O., “Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium”, J. Gen. Microbiol., 19 (1958), 592–606 | DOI

[16] Schaechter M., Williamson J. P., Hood J. R. Jr., Koch A. L., “Growth, cell and nuclear divisions in some bacteria”, J. Gen. Microbiol., 29 (1962), 421–434 | DOI

[17] Mitchison J. M., “Single cell studies of the cell cycle and some models”, Theor. Biol. Med. Model., 2 (2005), 4 | DOI

[18] Cooper S., “Distinguishing between linear and exponential cell growth during the division cycle: Single-cell studies, cell-culture studies, and the object of cell-cycle research”, Theor. Biol. Med. Model., 3 (2006), 10 | DOI

[19] Cullum J., Vicente M., “Cell growth and length distribution in Escherichia coli”, J. Bacteriol., 134 (1978), 330–337

[20] Kubitschek H. E., “Increase in cell mass during the division cycle of Escherichia coli B/rA”, J. Bacteriol., 168:2 (1986), 613–618

[21] Grover N. B., Woldringh C. L., “Dimensional regulation of cell-cycle events in Escherichia coli during steady-state growth”, Microbiology, 147 (2001), 171–181

[22] Reshes G., Vanounou S., Fishov I., Feingold M., “Cell shape dynamics in Escherichia coli”, Biophys. J., 94 (2008), 251–264 | DOI

[23] Godin M., Delgado F. F., Son S., Grover W. H., Bryan A. K., Tzur A., Jorgensen P., Payer K., Grossman A. D., Kirschner M. W., Manalis S. R., “Using buoyant mass to measure the growth of single cells”, Nat. Methods, 7:5 (2010), 387–390 | DOI

[24] Hill N. S., Kadoya R., Chattoraj D. K., Levin P. A., “Cell size and the initiation of DNA replication in bacteria”, PLoS Genet., 8:3 (2012), e1002549 | DOI

[25] Katayama T., Ozaki S., Keyamura K., Fujimitsu K., “Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and ORI”, Nat. Rev. Microbiol., 8:3 (2010), 163–170 | DOI

[26] Yanenko N. N., The method of fractional steps. The solution of problems of mathematical physics in several variables, ed. M. Holt, Springer Verlag, New York, 1971, 156 pp. | MR | Zbl

[27] Kang S., Lee H., Han J. S., Hwang D. S., “Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication”, J. Biol. Chem., 274 (1999), 11463–11458 | DOI

[28] Campbell J. L., Kleckner N., “E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork”, Cell, 62:5 (1990), 967–979 | DOI

[29] Bogan J. A., Helmstetter C. E., “DNA sequestration and transcription in the OriC region of Escherichia coli”, Mol. Microbiol., 26:5 (1997), 889–896 | DOI

[30] Katayama T., Kubota T., Kurokawa K., Crooke E., Sekimizu K., “The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase”, Cell, 94 (1998), 61–71 | DOI

[31] Kawakami H., Su'etsugu M., Katayama T., “An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication”, J. Struct. Biol., 156 (2006), 220–229 | DOI

[32] Su'etsugu M., Nakamura K., Keyamura K., Kudo Y., Katayama T., “Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis”, J. Biol. Chem., 283:52 (2008), 36118–36131 | DOI

[33] Helmstetter C. E., Cooper S., “DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r”, J. Mol. Biol., 31:3 (1968), 507–518 | DOI

[34] Olsen G. J., Woese C. R., Overbeek R., “The winds of (evolutionary) change: breathing new life into microbiology”, J. Bacteriol., 176 (1994), 1–6

[35] Hayashi M., Ogura Y., Harry E. J., Ogasawara N., Moriya S., “Bacillus subtilis YabA is involved in determining the timing and synchrony of replication initiation”, FEMS Microbiol. Lett., 247:1 (2005), 73–79 | DOI

[36] Noirot-Gros M. F., Velten M., Yoshimura M., McGovern S., Morimoto T., Ehrlich S. D., Ogasawara N., Polard P., Noirot P., “Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis”, Proc. Natl. Acad. Sci. USA., 103 (2006), 2368–2373 | DOI

[37] Cho E., Ogasawara N., Ishikawa S., “The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtilis”, Genes Genet. Syst., 83 (2008), 111–125 | DOI

[38] Scholefield G., Whiting R., Errington J., Murray H., “Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation”, Mol Microbiol., 79 (2011), 1089–1100 | DOI