Computational studies of PVDF and P(VDF-TrFE) nanofilms polarization during phase transition revealed by emission spectroscopy
Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 273-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

Electronic structure and self-polarization of P(VDF-TrFE) Langmuir-Blodgett nanofilms according to their thickness, composition and structural conformation under temperature phase transition were analyzed. Both thermo-stimulated exoelectron emission (TSEE) spectroscopy and computational simulation, including quantum-chemical calculations from first principles, were provided. PVDF and composite P(VDF-TrFE) (70:30) molecular chains as Trans and Gauche conformers as well as crystal cells were modeled for these agreed-upon TSEE analyses. The quantum-chemical calculations and the computational simulation were based on the density functional theory (DFT) as well as semi-empirical (PM3) methods. It was demonstrated that the energies of electron states as well as the total energies of the studied PVDF and P(VDFTrFE) molecular clusters during phase transformation influenced electron work function and electron affinity. The performed combined analysis of the TSEE experimental data as well as the computational data of the molecular models showed the effectiveness of that joined approach. TSEE for the first time was in use for contactless measurements of nanofilm polarization and characterizations of the phase transition. The proposed new method can be widely used in nanobiomedicine, particularly in development of new bone bio-implants, including built-in sensors (new smart nanotechnology).
@article{MBB_2011_6_2_a8,
     author = {V. S. Bystrov and E. V. Paramonova and Yu. D. Dekhtyar and A. Katashev and N. Polyaka and A. V. Bystrova and A. V. Sapronova and V. M. Fridkin and G. Klim and A. L. Kholkin},
     title = {Computational studies of {PVDF} and {P(VDF-TrFE)} nanofilms polarization during phase transition revealed by emission spectroscopy},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {273--297},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a8/}
}
TY  - JOUR
AU  - V. S. Bystrov
AU  - E. V. Paramonova
AU  - Yu. D. Dekhtyar
AU  - A. Katashev
AU  - N. Polyaka
AU  - A. V. Bystrova
AU  - A. V. Sapronova
AU  - V. M. Fridkin
AU  - G. Klim
AU  - A. L. Kholkin
TI  - Computational studies of PVDF and P(VDF-TrFE) nanofilms polarization during phase transition revealed by emission spectroscopy
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2011
SP  - 273
EP  - 297
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a8/
LA  - ru
ID  - MBB_2011_6_2_a8
ER  - 
%0 Journal Article
%A V. S. Bystrov
%A E. V. Paramonova
%A Yu. D. Dekhtyar
%A A. Katashev
%A N. Polyaka
%A A. V. Bystrova
%A A. V. Sapronova
%A V. M. Fridkin
%A G. Klim
%A A. L. Kholkin
%T Computational studies of PVDF and P(VDF-TrFE) nanofilms polarization during phase transition revealed by emission spectroscopy
%J Matematičeskaâ biologiâ i bioinformatika
%D 2011
%P 273-297
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a8/
%G ru
%F MBB_2011_6_2_a8
V. S. Bystrov; E. V. Paramonova; Yu. D. Dekhtyar; A. Katashev; N. Polyaka; A. V. Bystrova; A. V. Sapronova; V. M. Fridkin; G. Klim; A. L. Kholkin. Computational studies of PVDF and P(VDF-TrFE) nanofilms polarization during phase transition revealed by emission spectroscopy. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 273-297. http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a8/

[1] Blinov L., Fridkin V., Palto S., Bune A., Dowben P. and Ducharme S., Physics-Uspekhi, 43:3 (2000), 243–257 | DOI | MR

[2] Bune A.V., Fridkin V.M., Ducharme S., Blinov L.M., Palto S.P., Sorokin A.V., Yudin S.G. and Zlatkin A., Nature (London), 391 (1998), 874 | DOI

[3] Qu H., Yao W., Zhang J., Dusharme S., Dowben P.A., Sorokin A.V. and Fridkin V.M., Appl. Phys. Lett., 82 (2003), 4322–4324 | DOI

[4] Kliem H. and Tardos-Morgane R., J. Phys. D: Appl. Phys., 38 (2005), 1860–1868 | DOI

[5] Tadros-Morgane R. and Kliem H., J. Phys. D: Appl. Phys., 39 (2006), 4872–4877 | DOI

[6] Gruverman A. and Kholkin A., Rep. Prog. Phys., 69 (2006), 2443–2474 | DOI

[7] Tolstousov A., Gaynutdinov R., Tadros-Morgane R., Judin S., Tolstikhina A., Kliem H., Ducharme S. and Fridkin V., Ferroelectrics, 354 (2007), 99–105 | DOI

[8] Li D., Bonneli D.A., “Ferroelectric Lithography”, Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, eds. Kalinin S.V. and Gruverman A., Springer, New York, 2007, 906–928

[9] Rodriguez B., Jesse S., Baddorf A. and Kalinin S., Phys. Rev. Lett., 96 (2006), 237602 | DOI

[10] Rodrigeuz B.J., Jesse S., Kalinin S., Kim J., Ducharme S. and Fridkin V.M., Appl. Phys. Lett., 90 (2007), 122904 | DOI

[11] Bystrov V.S., Bdikin I.K., Kiselev D.A., Yudin S.G., Fridkin V.M. and Kholkin A.L., J. Phys. D: Appl. Phys., 40 (2007), 4571–4577 | DOI

[12] Kang S.J., Bae I., Shin Y.J., Park Y.J., Huh J., Park S.-M., Kim H.-C. and Park C., NANO Letters, 11 (2011), 138–144 | DOI

[13] Egusa S., Wang Z., Chocat N., Ruff Z.M., Stolyarov A.M., Shemuly D., Sorin F., Rakich P.T., Joannopoulos J.D and Fink Y., Nature Materials / Advanced online Publication, 2010, 1–6; doi: 10.1038/NMAT2792 | DOI

[14] Hu Z., Tian M., Nysten B. and Jonas A.M., Nature Materials, 8 (2009), 62–67 | DOI

[15] Amer S. and Badawy W., Current Pharmaceutical Biotechnology, 6 (2005), 57

[16] Bystrov V.S., Bystrova N.K., Paramonova E.V., Vizdrik G., Sapronova A.V., Kuehn M., Kliem H. and Kholkin A.L., J. Phys: Condens. Matter, 19 (2007), 456210 | DOI

[17] Bystrov V., Bystrova N., Kiselev D., Paramonova E., Kuehn M., Kliem H. and Kholkin A., Integrated Ferroelectrics, 99 (2008), 31–40 | DOI

[18] Hereida A., Machado M., Bdikin I., Gracio J., Yudin S., Fridkin V.M., Delgadillo I. and Kholkin A.L., J. Phys. D: Appl. Phys., 43:33 (2010), 335301 | DOI

[19] Callegari B. and Belangero W.D., “Analysis of the interface formed among the poli(viniilidene) fluoride (piezoelectric and nonpiezoelectric) and the bone tissue of rats”, Acta Ortop. Bras., 12:3 (2004), 160–166 | DOI | MR

[20] Mehta R., The hip gets smart, Materials World Magazine, 01 Apr 2010 URL: (accessed 17 July 2011) http://www.iom3.org/news/hip-and-smart-biomaterials

[21] Bystrov V.S., Bystrova N.K., Paramonova E.V. and Dekhtyar Yu.D., “Interaction of charged hydroxyapatite and living cells. I. Hydroxyapatite polarization properties”, Mathematical biology and bioinformatics, 4:2 (2009), 7–11; URL: (accessed 17 July 2011) http://www.matbio.org/downloads_en/Bystrov_en2009(4_7).pdf

[22] PERCERAMICS URL: (accessed 17 July 2011) http://www.perceramics.vip.lv/

[23] Dekhtyar Yu., Bystrov V., Khlusov I., Polyaka N., Sammons R. and Tyulkin F., “Hydroxyapatite Surface Nanoscaled characterization and Electrical Potential F Functionalization to Engineer Osteoblasts Attachment and Generate Bone Tissue”, The Society For Biomaterials 2011 Annual Meeting Exposition (April 13–16, 2011, Orlando, Florida, USA), A 519

[24] Lines M.E. and Glass A.M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1979

[25] Minc R.I., Mil’man I.I. and Kryuk V.I., Physics-Uspekhi, 19:8 (1976), 697–707 (Russian) | DOI

[26] Dekhtyar Yu.D. and Vinyarskaya Yu.A., “Exoelectron analysis of amorphous silicon”, J. Appl. Phys., 75:8 (1994), 4201–4207 | DOI

[27] Dekhtyar Yu.D., “Photo-, dual- and exoelectron spectroscopy to characterize nanostructures”, Functionalized Nanoscale Materials, Devices and Systems NATO Science for Peace and Security Series B: Physics and Biophysics, eds. Vaseashta A. and Mihailescu I.N., Springer Science + Business Media B.V., 2008, 169–183 | DOI

[28] Marcus M.A., Ferroelectrics, 40 (1982), 29–41 | DOI

[29] Furukawa T., Ferroelectrics, 57 (1984), 63–72 | DOI

[30] Kimura K. and Ohigashi H., Jpn. J. Appl. Phys., 25 (1986), 383 | DOI

[31] Newnham R.E., Sundar V., Yumnirun R., Su J. and Zhang Q.M., J. Phys. Chem. B., 101 (1997), 10141–10150 | DOI

[32] Xiao J., Zhou X., Zhang Q.M. and Dowben P.A., J. Appl. Phys., 106 (2009), 044105 | DOI

[33] Choi J., Dowben P.A., Pebley S., Bune A.V. and Ducharme S., Phys. Rev. Lett., 80:6 (1998), 1328–1331 | DOI

[34] Elashmawi I.S. and Hakeem N.A., Polymer Engineering and Science, 48:5 (2008), 895–901 | DOI

[35] Elashmawi I.S., Abdelrazek E.M., Ragab H.M. and Hakeem N.A., Physica B., 405 (2010), 94–98 | DOI

[36] Mandal D., Henkel K., Muller K. and Schmeiber D., Bull. Mater. Sci., 33:4 (2010), 457–461 | DOI

[37] Ortiz E., Cuan A., Badillo C., Cortes-Romero C.M., Wang Q. and Norena L., Int. J. Quantum Chem., 110 (2010), 2411–2417

[38] Arbuzov V.I., Osnovy radiatsionnogo opticheskogo materialovedeniya, uchebnoe posobie, SPbGUITMO, SPb, 2008, 284 pp.

[39] Hypercube 2002 HyperChem. Tools for Molecular Modeling URL: (accessed 17 July 2011) http://www.hyper.com/?tabid=360

[40] Hamprecht F.A., Cohen A.J., Tozer D.J., and Handy N.C., J. Chem. Phys., 109 (1998), 6264–6271 | DOI

[41] Becke A.D., Phys. Rev. A, 38 (1988), 3098–3100 | DOI

[42] Johnson B.G., Gill P.M. and Pople J.A., J. Chem. Phys., 98 (1993), 5612–5626 | DOI

[43] Perdew J.P., Chevary J.A., Volsko S.H., Jackson K.A., Pederson M.R., Singh D.J., and Fiolhais C., Phys. Rev. B, 46 (1992), 6671–6687 | DOI

[44] Zhao Y. and Truhlar D.G., Accounts of Chemical Research, 41:2 (2007), 157–167 | DOI

[45] Stewart J.J.P., J. Mol. Model., 14 (2008), 499–535 | DOI

[46] Su H., Strachan A. and Goddard W.A. III, Phys. Rev. B, 70 (2004), 064101 | DOI

[47] Guo S.S., Sun X.H., Wang S.X., Xu S., Zhao X.-Z. and Chan H.L.W., “Thermal and structural properties of high-energy electron irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) copolymer blends”, Mater. Chem. and Phys., 91 (2005), 348–354 | DOI

[48] Guo S.S., Sun C.L., Wu T.S., Zhao X.Z. and Chan H.L.W., “Thermal study on structural changes and phase transition in high-energy electron-irradiated blends of P(VDF–TrFE) copolymers”, J. Mater. Sci., 42 (2007), 1184–1189 | DOI

[49] Li W., Meng Q., Zheng Y. Zhang Z., Xia W., and Xu Z., Appl. Phys. Lett., 96 (2010), 192905 | DOI

[50] Gregorio R.Jr. and Botta M.M., J. Polymer Sci: Part B: Polymer Physics, 36 (1998), 403–414 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[51] Duan C.-G., Mei W.N., Harfy J.R., Ducharme S., Choi J. and Dowben P.A., Europhys. Lett., 61:1 (2003), 81–87 | DOI

[52] Dowben P.A., Xiao J., Xu B., Sokolov A. and Doudin B., Applied Surface Sciences, 254:14 (2008), 4238–4244 | DOI

[53] Fridkin V.M., Photoferroelectrics, Springer-Verlag, NY-Berlin, 1979

[54] Kliem H., Advances in Solid State Physics, 43 (2003), 861–874 | DOI