Structure-specific modules as indicators of promoter DNA in bacterial genomes
Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 1, pp. 39-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

A unified version of promoter-search software, exploiting evolutionary conservation in the structural organization of bacterial transcription machinery is suggested (PlatPromU). In contrast with the initial algorithm PlatProm, optimized for recognition of $\sigma^\mathrm D$-dependent promoters in the genome of Escherichia coli (E.coli), modified version does not use weight matrices, reflecting the occurrence frequency of consensus base pairs within $-10$ and $-35$ elements. Its predicting potentiality was assessed by the ability to recognize the known promoters of Corynebacterium glutamicum (C.glutamicum) – an evolutionarily distant from E.coli microorganism. “Sensitivity” of PlatPromU appeared to be comparable with that of specialized program (PlatPromC), adapted for recognition of C.glutamicum regulatory sites, and higher than predicting potentiality of initial algorithm PlatProm. The unified program, modeling only structural and conformational features of promoter DNA, may, therefore, be recommended as a tool for preliminary mapping of regulatory sites in genomes with unknown context of specific elements.
@article{MBB_2011_6_1_a8,
     author = {S. S. Kiselev and O. N. Ozoline},
     title = {Structure-specific modules as indicators of promoter {DNA} in bacterial genomes},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {39--52},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a8/}
}
TY  - JOUR
AU  - S. S. Kiselev
AU  - O. N. Ozoline
TI  - Structure-specific modules as indicators of promoter DNA in bacterial genomes
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2011
SP  - 39
EP  - 52
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a8/
LA  - ru
ID  - MBB_2011_6_1_a8
ER  - 
%0 Journal Article
%A S. S. Kiselev
%A O. N. Ozoline
%T Structure-specific modules as indicators of promoter DNA in bacterial genomes
%J Matematičeskaâ biologiâ i bioinformatika
%D 2011
%P 39-52
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a8/
%G ru
%F MBB_2011_6_1_a8
S. S. Kiselev; O. N. Ozoline. Structure-specific modules as indicators of promoter DNA in bacterial genomes. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a8/

[1] Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N., “Gains and unexpected lessons in genome-scale promoter mapping”, Nucleic Acids Res., 37 (2009), 4419–4431 | DOI

[2] Ozoline O. N., Deev A. A., “Predicting antisense RNAs in the genomes of Escherichia coli and Salmonella typhimurium using promoter-search algorithm PlatProm”, J. Bioinf. Comput. Biol., 4 (2006), 443–454 | DOI

[3] Ozolin O. N., Purtov Yu. A., Brok-Volchanskii A. S., Deev A. A., Lukyanov V. I., “Osobennosti DNK-belkovykh vzaimodeistvii v transkriptsionnykh kompleksakh”, Escherichia coli. Molekulyarnaya biologiya, 38 (2004), 786–797

[4] , data obrascheniya: 24.01.2011 ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

[5] Schröder J., Jochmann N., Rodionov D. A., Tauch A., “The Zur regulon of Corynebacterium glutamicum ATCC 13032”, BMC Genomics, 11 (2010), 12 | DOI

[6] Brocker M., Schaffer S., Mack C., Bott M., “Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA”, J. Bacteriol., 191 (2009), 3869–3880 | DOI

[7] Patek M., Nesvera J., Guyonvarch A., Reyes O., Leblon G., “Promoters of Corynebacterium glutamicum”, J. Biotechnol., 104 (2003), 311–323 | DOI

[8] Youn J.-W., Jolkver E., Kramer R., Marin K., Wendisch V. F., “Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum”, J. Bacteriol., 190 (2008), 6458–6466 | DOI

[9] Jungwirth B., Emer D., Brune I., Hansmeier N., Puhler A., Eikmanns B. J., Tauch A., “Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR”, FEMS Microbiol. Lett., 281 (2008), 190–197 | DOI

[10] Kocan M., Schaffer S., Ishige T., Sorger-Herrmann U., Wendisch V. F., Bott M., “Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response”, J. Bacteriol., 188 (2006), 724–732 | DOI

[11] Han S. O., Inui M., Yukawa H., “Transcription of Corynebacterium glutamicum genes involved in tricarboxylic acid cycle and glyoxylate cycle”, J. Mol. Microbiol. Biotechnol., 15 (2008), 264–276 | DOI

[12] Brune I., Werner H., Huser A. T., Kalinowski J., Puhler A., Tauch A., “The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum”, BMC Genomics, 7 (2006), 21 | DOI

[13] Barreiro C., Gonzalez-Lavado E., Patek M., Martin J.-F., “Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters”, J. Bacteriol., 186 (2004), 413–417 | DOI

[14] Suda M., Teramoto H., Imamiya T., Inui M., Yukawa H., “Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation”, Appl. Microbiol. Biotechnol., 81 (2008), 505–513 | DOI

[15] Van Ooyen J., Emer D., Bussmann M., Botta M., Eikmanns B. J., Eggeling L., “Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR”, J. Biotechnol., 2011 (to appear)

[16] Han S. O., Inui M., Yukawa H., “Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase”, Microbiology, 153 (2007), 2190–2202 | DOI

[17] Schweitzer J.-E., Stolz M., Diesveld R., Etterich H., Eggeling L., “The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR”, J. Biotechnol., 139 (2009), 214–221 | DOI

[18] Koch D. J., Ruckert C., Albersmeier A., Huser A. T., Tauch A., Puhler A., Kalinowski J., “The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate”, Mol. Microbiol., 58 (2005), 480–494 | DOI

[19] Nishimura T., Vertes A. A., Shinoda Y., Inui M., Yukawa H., “Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor”, Appl. Microbiol. Biotechnol., 75 (2007), 889–897 | DOI

[20] Barruiso-Iglesias M., Barreiro C., Flechoso F., Martin J. F., “Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH”, Microbiology, 152 (2006), 11–21 | DOI

[21] Nentwich S. S., Brinkrolf K., Gaigalat L., Huser A. T., Rey D. A., Mohrbach T., Marin K., Puhler A., Tauch A., Kalinowski J., “Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032”, Microbiology, 155 (2009), 150–164 | DOI

[22] Brune I., Jochmann N., Brinkrolf K., Huser A. T., Gerstmeir R., Eikmanns B. J., Kalinowski J., Puhler A., Tauch A., “The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum”, J. Bacteriol., 189 (2007), 2720–2733 | DOI

[23] Engels V., Wendisch V. F., “The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum”, J. Bacteriol., 189 (2007), 2955–2966 | DOI

[24] Tanaka Y., Okai N., Teramoto H., Inui M., Yukawa H., “Regulation of expression of phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R”, Microbiology, 154 (2008), 264–274 | DOI

[25] Brinkrolf K., Ploger S., Solle S., Brune I., Nentwich S. S., Huser A. T., Kalinowski J., Puhler A., Tauch A., “The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences”, Microbiology, 154 (2008), 1068–1081 | DOI

[26] Krug A., Wendisch V. F., Bott M., “Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum”, J. Biol. Chem., 280 (2005), 585–595

[27] Nakunst D., Larisch C., Huser A. T., Tauch A., Puhler A., Kalinowski J., “The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes”, J. Bacteriol., 189 (2007), 4696–4707 | DOI

[28] Zemanova M., Kaderabkova P., Patek M., Knoppova M., Silar R., Nesvera J., “Chromosomally encoded small antisense RNA in Corynebacterium glutamicum”, FEMS Microbiol. Lett., 279 (2008), 195–201 | DOI

[29] Jochmann N., Kurze A.-K., Czaja L. F., Brinkrolf K., Brune I., Huser A. T., Hansmeier N., Puhler A., Borovok I., Tauch A., “Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays”, Microbiology, 155 (2009), 1459–1477 | DOI

[30] Dietrich C., Nato A., Bost B., Le Marechal P., Guyonvarch A., “Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum”, Microbiology, 155 (2009), 1360–1375 | DOI

[31] Gao Y.-G., Suzuki H., Itou H., Zhou Y., Tanaka Y., Wachi M., Watanabe N., Tanaka I., Yao M., “Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization”, Nucl. Acids Res., 36 (2008), 7110–7123 | DOI

[32] Engels S., Schweitzer J.-E., Ludwig C., Bott M., Schaffe S., “clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor $\sigma^H$”, Mol. Microbiol., 52 (2004), 285–302 | DOI

[33] Letek M., Ordonez E., Fiuza M., Honrubia-Marcos P., Vaquera J., Gil J. A., Mateos L. M., “Characterization of the promoter region of ftsZ from Corynebacterium glutamicum and controlled overexpression of FtsZ”, Int. Microbiol., 10 (2007), 271–282

[34] Schreiner M. E., Fiur D., Holatko J., Patek M., Eikmanns B. J., “E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects”, J. Bacteriol., 187 (2005), 6005–6018 | DOI

[35] Inui M., Suda M., Okino S., Nonaka H., Puskas L. G., Vertes A. A., Yukawa H., “Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions”, Microbiology, 153 (2007), 2491–2504 | DOI

[36] Zhao K. X., Huang Y., Chen X., Wang N. X., Liu S. J., “PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum”, J. Bacteriol., 192 (2010), 1565–1572 | DOI

[37] Okibe N., Suzuki N., Inui M., Yukawa H., “Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum”, Lett. Appl. Microbiol., 50 (2010), 173–178 | DOI

[38] Frunzke J., Engels V., Hasenbein S., Gatgens C., Bott M., “Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2”, Mol. Microbiol., 67 (2008), 305–322 | DOI

[39] Letek M., Valbuena N., Ramos A., Ordonez E., Gil J. A., Mateos L. M., “Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum”, J. Bacteriol., 188 (2006), 409–423 | DOI

[40] Ruckert C., Milse J., Albersmeier A., Koch D. J., Puhler A., Kalinowski J., “The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules”, BMC Genomics, 9 (2008), 483 | DOI

[41] Cramer A., Eikmanns B. J., “RamA, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to negative autoregulation”, J. Mol. Microbiol. Biotechnol., 12 (2007), 51–59 | DOI

[42] Youn J.-W., Jolkver E., Kramer R., Marin K., Wendisch V. F., “Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum”, J. Bacteriol., 191 (2009), 5480–5488 | DOI

[43] Schreiner M. E., Riedel C., Holatko J., Patek M., Eikmanns B. J., “Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects”, J. Bacteriol., 188 (2006), 1341–1350 | DOI

[44] Itou H., Okada U., Suzuki H., Yao M., Wachi M., Watanabe N., Tanaka I., “The CGL2612 protein from Corynebacterium glutamicum is a drug resistance-related transcriptional repressor: structural and functional analysis of a newly identified transcription factor from genomic DNA analysis”, J. Biol. Chem., 280 (2005), 38711–38719 | DOI

[45] Barth E., Barcelo M. A., Klackta C., Benz R., “Reconstitution experiments and gene deletions reveal the existence of two-component major cell wall channels in the genus Corynebacterium”, J. Bacteriol., 192 (2010), 786–800 | DOI

[46] Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J., “Acetate metabolism and its regulation in Corynebacterium glutamicum”, J. Biotechnol., 104 (2003), 99–122 | DOI

[47] Auchter M., Arndt A., Eikmanns B. J., “Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB”, J. Biotechnol., 140 (2009), 84–91 | DOI

[48] Arndt A., Eikmanns B. J., “The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression”, J. Bacteriol., 189 (2007), 7408–7416 | DOI

[49] Ruckert C., Koch D. J., Rey D. A., Albersmeier A., Mormann S., Puhler A., Kalinowski J., “Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction”, BMC Genomics, 6 (2005), 121 | DOI

[50] Georgi T., Engels V., Wendisch V. F., “Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum”, J. Bacteriol., 190 (2008), 963–971 | DOI

[51] Hertz G. Z., Stormo G. D., “Escherichia coli promoter sequences: analysis and prediction”, Methods in Enzymology, 273 (1996), 30–42 | DOI

[52] Brok-Volchanski A. S., Masulis I. S., Shavkunov K. S., Lukyanov V. I., Purtov Yu. A., Kostyanicina E. G., Deev A. A., Ozoline O. N., “Predicting sRNA genes in the genome of E.coli by the promoter-search algorithm PlatProm”, Bioinformatics of Genome Regulation and Structure II, eds. Kolchanov N., Hofestaedt R., Milanesi L., Springer, New York, 2006, 11–20

[53] Ozoline O. N., Deev A. A., Arkhipova M. V., Chasov V. V., Travers A., “Proximal transcribed regions of bacterial promoters have non-random distribution of A/T-tracts”, Nucl. Acids Res., 27 (1999), 4768–4774 | DOI

[54] Ozoline O. N., Deev A. A., Trifonov E. N., “DNA bendability – a novel feature in E.coli promoter recognition”, J. Biomol. Struct. Dynam., 16 (1999), 825–831

[55] Chasov V. V., Deev A. A., Masulis I. S., Ozolin O. N., “A/T-treki v strukture promotorov Escherichia coli: kharakter raspredeleniya i funktsionalnoe znachenie”, Molekulyarnaya biologiya, 36 (2002), 682–688

[56] Ozoline O. N., Deev A. A., Arkhipova M. V., “Noncanonical sequence elements in the promoter structure. Cluster analysis of promoters recognized by Escherichia coli RNA polymerase”, Nucleic Acids Res., 25 (1997), 4703–4709 | DOI

[57] Schneider T. D., Stormo G. D., Gold L., Ehrenfeucht A., “Information content of binding sites on nucleotide sequences”, J. Mol. Biol., 188 (1986), 415–431 | DOI

[58] Huerta A. M., Collado-Vides J., “Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals”, J. Mol. Biol., 333 (2003), 261–278 | DOI

[59] Huerta A., Francino M. P., Morett E., Collado-Vides J., “Selection for unequal densities of s70 promoter-like signals in different regions of large bacterial genomes”, PLoS Genetics, 2 (2006), e185 | DOI