Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2010_5_2_a4, author = {D. A. Tikhonov and E. V. Sobolev}, title = {Method of pseudoaveraged functions in the {RISM} theory. {Temperature} dependence of oxytocin peptide hydration}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {202--214}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a4/} }
TY - JOUR AU - D. A. Tikhonov AU - E. V. Sobolev TI - Method of pseudoaveraged functions in the RISM theory. Temperature dependence of oxytocin peptide hydration JO - Matematičeskaâ biologiâ i bioinformatika PY - 2010 SP - 202 EP - 214 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a4/ LA - ru ID - MBB_2010_5_2_a4 ER -
%0 Journal Article %A D. A. Tikhonov %A E. V. Sobolev %T Method of pseudoaveraged functions in the RISM theory. Temperature dependence of oxytocin peptide hydration %J Matematičeskaâ biologiâ i bioinformatika %D 2010 %P 202-214 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a4/ %G ru %F MBB_2010_5_2_a4
D. A. Tikhonov; E. V. Sobolev. Method of pseudoaveraged functions in the RISM theory. Temperature dependence of oxytocin peptide hydration. Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010) no. 2, pp. 202-214. http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a4/
[1] Chandler D., Andersen H. C., “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids”, Journal of Chemical Physics, 57 (1972), 1930–1937 | DOI
[2] Tikhonov D. A., Sobolev E. V., “Usrednennyi po molekulyarnym traektoriyam metod integralnykh uravnenii v priblizhenii RISM”, Matematicheskaya biologiya i bioinformatika, 5:2 (2010), 188–201, (data obrascheniya 17.12.2010) http://www.matbio.org/downloads/Tikhonov2010(5_188).pdf | MR
[3] Schweizer K. S., Curro J. G., “Integral-equation theory of the structure of polymer melts”, Physical Review Letters, 58:3 (1987), 246–249 | DOI
[4] Hirata F., Rossky P. J., Pettitt B. M., “The interionic potential of mean force in a molecular polar solvent from an extended RISM equation”, Journal of Chemical Physics, 78:6 (1983), 4133–4144 | DOI
[5] van Leeuwen J. M. J., Groeneveld J., de Boer J., “New method for the calculation of the pair correlation function. I”, Physica, 25:7–12 (1959), 792–808 | MR | Zbl
[6] Kovalenko A., Hirata F., “Self-consistent description of a metal-water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model”, Journal of Chemical Physics, 110:20 (1999), 10095–10112 | DOI
[7] Tikhonov D. A., Polozov R. V., Timoshenko E. G. et al., “Hydration of a B-DNA fragment in the method of atom-atom correlation functions with the reference interaction site model approximation”, The Journal of Chemical Physics, 109 (1998), 1528–1539 | DOI
[8] Sobolev E. V., Tikhonov D. A., “Primenenie metoda RISM dlya otsenki svobodnoi energii svyazyvaniya 4', 6-diamidino-2-fenilindola v malom zhelobe DNK po molekulyarno-dinamicheskoi traektorii”, Matematicheskaya biologiya i bioinformatika, 5:2 (2010), 98–113, (data obrascheniya 15.12.2010) http://www.matbio.org/downloads/Sobolev2010(5_98).pdf | MR
[9] Chandler D., Singh Y., Richardson D. M., “Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents”, Journal of Chemical Physics, 81:4 (1984), 1975–1982 | DOI
[10] Singer S. J., Chandler D., “Free energy functions in the extended RISM approximation”, Molecular Physics, 55 (1985), 621–625 | DOI
[11] Morita T., Hiroike K., “A new approach to the theory of classical fluids. I”, Progress of Theor. Phys., 23 (1960), 1003–1027 | DOI | MR | Zbl
[12] Zichi D. A., Rossky P. J., “Molecular conformational equilibria in liquids”, The Journal of Chemical Physics, 84:3 (1986), 1712–1723 | DOI
[13] Ten-no S., “Free energy of solvation for the reference interaction site model: Critical comparison of expressions”, Journal of Chemical Physics, 115 (2001), 3724–3731 | DOI
[14] Ten-no S., Iwata S., “On the connection between the reference interaction site model integral equation theory and the partial wave expansion of the molecular Ornstein–Zernike equation”, Journal of Chemical Physics, 111 (1999), 4865–4868 | DOI
[15] Kovalenko A., Hirata F., “Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method”, Journal of Chemical Physics, 113 (2000), 2793–2805 | DOI
[16] Pearlman D. A., Case D. A., Caldwell J. W. et al., “AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules”, Computational Physics Communications, 91 (1995), 1–41 | DOI | Zbl
[17] Case D. A., Darden T. A., Cheatham T. E. et al., AMBER 9, University of California, San Francisco, 2006
[18] Onufriev A., Bashford D., Case D. A., “Modification of the Generalized Born Model Suitable for Macromolecules”, Journal of Physical Chemistry B, 104:15 (2000), 3712–3720 | DOI
[19] Cornell W. D., Cieplak P., Bayly C. I. et al., “A Second Generation Force Field for the Simulation of Proteins and Nucleic Acids”, Journal of the American Chemical Society, 117 (1995), 5179–5197 | DOI
[20] Jorgensen W. L., Chandrasekhar J., Madura J. D. et al., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79:2 (1983), 926–935 | DOI
[21] York D., Evensen N. M., Martínez M. L., Delgado J. D. B., “Unified equations for the slope, intercept, and standard errors of the best straight line”, American Journal of Physics, 72:3 (2004), 367–375 | DOI
[22] Tikhonov D. A., Sobolev E. V., “Otsenki energii Gibbsa gidratatsii po molekulyarno-dinamicheskim traektoriyam metodom integralnykh uravnenii teorii zhidkostei v priblizhenii RISM”, Zhurnal fizicheskoi khimii, 85:3 (2011) (to appear)