Application of the RISM method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of a~DNA along simulation trajectory
Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010) no. 2, pp. 98-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

The efficient parallel algorithm for solving RISM equations in infinity dilution limit and estimate of solvation free energy was applied to study the relative binding energies of sequence-specific binding modes of 4${}'$,6-diamidino-2-phenylindole (DAPI) within the minor groove of a DNA duplex. The speedy implementation allows solvation free energies to be calculated at all points along a given simulation trajectory, leading to a more accurate representation of the solute than in the usual RISM approach considering the solute molecule as frozen.
@article{MBB_2010_5_2_a0,
     author = {E. V. Sobolev and D. A. Tikhonov and H. Fridman and T. N. Truong},
     title = {Application of the {RISM} method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of {a~DNA} along simulation trajectory},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {98--113},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a0/}
}
TY  - JOUR
AU  - E. V. Sobolev
AU  - D. A. Tikhonov
AU  - H. Fridman
AU  - T. N. Truong
TI  - Application of the RISM method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of a~DNA along simulation trajectory
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2010
SP  - 98
EP  - 113
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a0/
LA  - ru
ID  - MBB_2010_5_2_a0
ER  - 
%0 Journal Article
%A E. V. Sobolev
%A D. A. Tikhonov
%A H. Fridman
%A T. N. Truong
%T Application of the RISM method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of a~DNA along simulation trajectory
%J Matematičeskaâ biologiâ i bioinformatika
%D 2010
%P 98-113
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a0/
%G ru
%F MBB_2010_5_2_a0
E. V. Sobolev; D. A. Tikhonov; H. Fridman; T. N. Truong. Application of the RISM method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of a~DNA along simulation trajectory. Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010) no. 2, pp. 98-113. http://geodesic.mathdoc.fr/item/MBB_2010_5_2_a0/

[1] Pearlman D. A., Case D. A., Caldwell J. W. et al., “AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules”, Computational Physics Communications, 91 (1995), 1–41 | DOI | Zbl

[2] Cornell W. D., Cieplak P., Bayly C. I. et al., “A second generation force field for the simulation of proteins and nucleic acids”, Journal of the American Chemical Society, 117 (1995), 5179–5197 | DOI

[3] Case D. A., Darden T. A., Cheatham T. E. et al., AMBER 8, University of California, San Francisco, 2004 | Zbl

[4] Chandler D., Andersen H. C., “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids”, Journal of Chemical Physics, 57 (1972), 1930–1937 | DOI

[5] Hansen J. P., McDonald I. R., Theory of simple liquids, Academic Press, London, 1986

[6] Kitao A., Hirata F., Go N., “Effects of solvent on the conformation and the collective motions of a protein. 3. Free energy”, Journal of Physical Chemistry, 97 (1993), 10231–10235 | DOI

[7] Imai T., Hiraoka R., Kovalenko A., Hirata F., “Water molecules in a protein cavity detected by a statistical-mechanical theory”, Journal of the American Chemical Society, 127 (2005), 15334–15335 | DOI

[8] Imai T., Kovalenko A., Hirata F., “Partial molar volume of proteins studied by the threedimensional reference interaction site model theory”, Journal of Physical Chemistry B, 109 (2005), 6658–6665 | DOI

[9] Imai T., Kovalenko A., Hirata F., “Solvation thermodynamics of protein studied by the 3D-RISM theory”, Chemical Physics Letters, 395 (2004), 1–6 | DOI

[10] Kinoshita M., Okamoto Y., Hirata F., “Solvent effects on conformational stability of peptides: RISM analyses”, Journal of Molecular Liquids, 90 (2001), 195–204 | DOI

[11] Kinoshita M., Okamoto Y., Hirata F., “Peptide conformations in alcohol and water: Analyses by the reference interaction site model theory”, Journal of the American Chemical Society, 122 (2000), 2773–2779 | DOI

[12] Kinoshita M., Okamoto Y., Hirata F., “Analysis on conformational stability of C-peptide of ribonuclease a in water using the reference interaction site model theory and Monte Carlo simulated annealing”, Journal of Chemical Physics, 110 (1999), 4090–4100 | DOI

[13] Kinoshita M., Okamoto Y., Hirata F., “First-principle determination of peptide conformations in solvents: Combination of Monte Carlo simulated annealing and RISM theory”, Journal of the American Chemical Society, 120 (1998), 1855–1863 | DOI

[14] Svensson B., Woodward C. E., “Integral equation theory for proteins: Application to Ca2+ binding in Calbindin D9k”, Journal of Physical Chemistry, 99 (1995), 1614–1618 | DOI

[15] Tikhonov D. A., Polozov R. V., Timoshenko E. G. et al., “Hydration of a B-DNA fragment in the method of atom-atom correlation functions with the reference interaction site model approximation”, Journal of Chemical Physics, 109 (1998), 1528–1539 | DOI

[16] Tikhonov D. A., “Metod integralnykh uravnenii teorii zhidkostei dlya izucheniya gidratatsii makromolekul”, Kompyutery i superkompyutery v biologii, eds. Lakhno V. D., Ustinin M. N., Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2002, 209–233

[17] Spackova N., Cheatham III T. E., Ryjacek F. et al., “Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-Drug Complexes. Minor Groove Binding between 4',6-Diamidino-2-phenylindole and DNA Duplexes in Solution”, Journal of the American Chemical Society, 125 (2003), 1759–1769 | DOI

[18] Larsen T. A., Goodsell D. S., Cascio D. et al., “The structure of DAPI bound to DNA”, Journal of Biomolecular Structure Dynamics, 7 (1989), 477–491

[19] Vlieghe D., Sponer J., Meervelt L. V., “Crystal structure of d(GGCCAATTGG) complexed with DAPI reveals novel binding mode”, Biochemistry, 38 (1999), 16443–16451 | DOI

[20] Loontiens F. G., McLaughlin L. W., Diekmann S., Clegg R. M., “Binding of hoechst 33258 and 4',6-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substituents”, Biochemistry, 30:1 (1991), 182–189 | DOI

[21] Waring M. J., Bailly C., “The influence of the exocyclic amino group characteristic of GC base pairs on molecular recognition of specific nucleotide sequences in DNA by Berenil and DAPI”, Journal of Molecular Recognition, 10 (1997), 121–127 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[22] Trotta E., D'Ambrosio E., Ravagnan G., Paci M., “Simultaneous and different binding mechanisms of 4', 6-diamidino-2-phenylindole to DNA hexamer (d(CGATCG))2. A 1H NMR study”, Journal of Biological Chemistry, 271 (1996), 27608–27614 | DOI

[23] Wilson W. D., Tanious F. A., Barton H. J. et al., “Binding of 4',6-diamidino-2-phenylindole (DAPI) to GC and mixed sequences in DNA: Intercalation of a classical groove-binding molecule”, Journal of the American Chemical Society, 111 (1989), 5008–5010 | DOI

[24] Wilson W. D., Tanious F. A., Barton H. J. et al., “The interaction of unfused polyaromatic heterocycles with DNA: Intercalation, groove-binding and bleomycin amplification”, Anti-Cancer Drug Design., 5 (1990), 31–42

[25] Honig B., Sbarp K., Yang A.-S., “Macroscopic Models of Aqueous Solutions: Biological and Chemical Applic”, Journal of Physical Chemistry, 97 (1993), 1101–1109 | DOI

[26] Hirata F., Rossky P. J., Pettitt B. M., “The interionic potential of mean force in a molecular polar solvent from an extended RISM equation”, Journal of Chemical Physics, 78 (1983), 4133–4144 | DOI

[27] van Leeuwen J. M. J., Groeneveld J., de Boer J., “New method for the calculation of the pair correlation function. I”, Physica, 25 (1959), 792–808 | DOI | MR | Zbl

[28] Kovalenko A., Hirata F., “Self-consistent description of a metal-water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model”, Journal of Chemical Physics, 110 (1999), 10095–10112 | DOI

[29] Kelley C. T., Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995 | MR

[30] Gillan M. J., “A new method of solving the liquid structure integral equations”, Molecular Physics, 38 (1979), 1781–1794 | DOI

[31] Chandler D., Singh Y., Richardson D., “Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents”, Journal of Chemical Physics, 81 (1984), 1975–1982 | DOI

[32] Singer S. J., Chandler D., “Free energy functions in the extended RISM approximation”, Molecular Physics, 55 (1985), 621–625 | DOI

[33] Morita T., Hiroike K., “A new approach to the theory of classical fluids. I”, Progress of Theoretical Physics, 23 (1960), 1003–1027 | DOI | MR | Zbl

[34] Zichi D. A., Rossky P. A., “Molecular conformational equilibria in liquids”, Journal of Chemical Physics, 84 (1985), 1712–1723 | DOI

[35] Ten-no S., “Free energy of solvation for the reference interaction site model: Critical comparison of expressions”, Journal of Chemical Physics, 115 (2001), 3724–3731 | DOI

[36] Ten-no S., Iwata S., “On the connection between the reference interaction site model integral equation theory and the partial wave expansion of the molecular Ornstein–Zernike equation”, Journal of Chemical Physics, 111 (1999), 4865–4868 | DOI

[37] Kovalenko A., Hirata F., “Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method”, Journal of Chemical Physics, 113 (2000), 2793–2805 | DOI

[38] Jorgensen W. L., Chandrasekhar J., Madura J. D. et al., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79 (1983), 926–935 | DOI