Modeling of hernia stress-deformed condition
Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 2, pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stress-deformed condition of a membrane has been modelled. The critical radius for a spherical membrane is shown to be half as much again the radius of a non-deformed one. It has been found that upon reaching a critical pressure the membrane may further grow under reduced pressure. Reinforcement of the areas of weakness in the abdominal wall with a tendon of the latissimus dorsi muscle during the surgical procedure allows to reduce the sag significantly and enlarge the critical intracavitary pressure up to acceptable values.
@article{MBB_2008_3_2_a1,
     author = {A. A. Kuzin and R. A. Kuzin and A. G. Khakimov},
     title = {Modeling of hernia stress-deformed condition},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {79--84},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a1/}
}
TY  - JOUR
AU  - A. A. Kuzin
AU  - R. A. Kuzin
AU  - A. G. Khakimov
TI  - Modeling of hernia stress-deformed condition
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2008
SP  - 79
EP  - 84
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a1/
LA  - ru
ID  - MBB_2008_3_2_a1
ER  - 
%0 Journal Article
%A A. A. Kuzin
%A R. A. Kuzin
%A A. G. Khakimov
%T Modeling of hernia stress-deformed condition
%J Matematičeskaâ biologiâ i bioinformatika
%D 2008
%P 79-84
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a1/
%G ru
%F MBB_2008_3_2_a1
A. A. Kuzin; R. A. Kuzin; A. G. Khakimov. Modeling of hernia stress-deformed condition. Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 2, pp. 79-84. http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a1/

[1] Berezovskii V. A., Kolotilov N. N., Biofizicheskie kharakteristiki tkanei cheloveka. Spravochnik, Nauk. dumka, Kiev, 1990, 224 pp.

[2] Brankov G., Osnovy biomekhaniki, Mir, Moskva, 1981, 256 pp. | MR

[3] Ermolov V. V., Soobscheniya laboratorii myagkikh obolochek, Vyp. 14, DVVIMU TsBNTI MMF, Vladivostok, 1971, 81–86

[4] Kuzin A. A., Khakimov A. G., Yukhin G. P., Modelirovanie napryazhenno-deformirovannogo sostoyaniya myagkoi obolochki (gryzhi), Preprint Instituta mekhaniki UNTs RAN, Institut mekhaniki UNTs RAN, Ufa, 1998, 32 pp. | Zbl

[5] Kuzin A. A., Khakimov A. G., Yukhin G. P., “Mathematical modelling of membrane (hernia) stress-deformed condition”, Russian Journal of Biomechanics, 5:4 (2001), 90–96