Modeling of hernia stress-deformed condition
Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 2, pp. 79-84
Cet article a éte moissonné depuis la source Math-Net.Ru
Stress-deformed condition of a membrane has been modelled. The critical radius for a spherical membrane is shown to be half as much again the radius of a non-deformed one. It has been found that upon reaching a critical pressure the membrane may further grow under reduced pressure. Reinforcement of the areas of weakness in the abdominal wall with a tendon of the latissimus dorsi muscle during the surgical procedure allows to reduce the sag significantly and enlarge the critical intracavitary pressure up to acceptable values.
@article{MBB_2008_3_2_a1,
author = {A. A. Kuzin and R. A. Kuzin and A. G. Khakimov},
title = {Modeling of hernia stress-deformed condition},
journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
pages = {79--84},
year = {2008},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a1/}
}
A. A. Kuzin; R. A. Kuzin; A. G. Khakimov. Modeling of hernia stress-deformed condition. Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 2, pp. 79-84. http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a1/
[1] Berezovskii V. A., Kolotilov N. N., Biofizicheskie kharakteristiki tkanei cheloveka. Spravochnik, Nauk. dumka, Kiev, 1990, 224 pp.
[2] Brankov G., Osnovy biomekhaniki, Mir, Moskva, 1981, 256 pp. | MR
[3] Ermolov V. V., Soobscheniya laboratorii myagkikh obolochek, Vyp. 14, DVVIMU TsBNTI MMF, Vladivostok, 1971, 81–86
[4] Kuzin A. A., Khakimov A. G., Yukhin G. P., Modelirovanie napryazhenno-deformirovannogo sostoyaniya myagkoi obolochki (gryzhi), Preprint Instituta mekhaniki UNTs RAN, Institut mekhaniki UNTs RAN, Ufa, 1998, 32 pp. | Zbl
[5] Kuzin A. A., Khakimov A. G., Yukhin G. P., “Mathematical modelling of membrane (hernia) stress-deformed condition”, Russian Journal of Biomechanics, 5:4 (2001), 90–96