Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2008_3_1_a1, author = {D. Chick and R. M. Borisyuk and Ya. B. Kazanovich}, title = {Synchronization in a~neural network of {Hodgkin--Huxley} neurons with a~central element}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {16--35}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2008_3_1_a1/} }
TY - JOUR AU - D. Chick AU - R. M. Borisyuk AU - Ya. B. Kazanovich TI - Synchronization in a~neural network of Hodgkin--Huxley neurons with a~central element JO - Matematičeskaâ biologiâ i bioinformatika PY - 2008 SP - 16 EP - 35 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2008_3_1_a1/ LA - ru ID - MBB_2008_3_1_a1 ER -
%0 Journal Article %A D. Chick %A R. M. Borisyuk %A Ya. B. Kazanovich %T Synchronization in a~neural network of Hodgkin--Huxley neurons with a~central element %J Matematičeskaâ biologiâ i bioinformatika %D 2008 %P 16-35 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2008_3_1_a1/ %G ru %F MBB_2008_3_1_a1
D. Chick; R. M. Borisyuk; Ya. B. Kazanovich. Synchronization in a~neural network of Hodgkin--Huxley neurons with a~central element. Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 1, pp. 16-35. http://geodesic.mathdoc.fr/item/MBB_2008_3_1_a1/
[1] Gray C. M., Konig P., Engel A. K., Singer W., “Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties”, Nature, 388 (1989), 334–337 | DOI
[2] Eckhorn R., Bauer R., Jordon W., Brosch M., Kruse W., Munk M., Reitboeck H. J., “Coherent oscillations: a mechanism of feature linking in the visual cortex”, Biol. Cybern., 60 (1988), 121–130 | DOI
[3] Singer W., Gray C. M., “Visual feature integration and the temporal correlation hypothesis”, Ann. Rev. Neurosci., 18 (1995), 555–586 | DOI
[4] Singer W., “Neuronal synchrony: A versatile code for the definition of relations”, Neuron, 24 (1999), 49–65 | DOI
[5] Steinmetz P. N., Roy A., Fitzgerald P., Hsiao S. S., Johnson K. O., Niebur E., “Attention modulates synchronized neuronal firing in primate somatosensory cortex”, Nature, 404 (2000), 187–190 | DOI
[6] Fries P., Reynolds J., Rorie A., Desimone R., “Modulation of oscillatory neuronal synchronization by selective visual attention”, Science, 291 (2001), 1560–1563 | DOI
[7] Fries P., Schroeder J.-H., Roelfsema P. R., Singer W., Engel A. K., “Oscillatory neural synchronization in primary visual cortex as a correlate of stimulus selection”, J. Neurosci., 22 (2002), 3739–3754
[8] Doesburg S. M., Roggeveen A. B., Kitajo K., Ward L. M., “Large-scale gamma-band phase synchronization and selective attention”, Cerebral Cortex, 2007, (in press)
[9] Kazanovich Ya. B., Borisyuk R. M., “Izuchenie rezhimov sinkhronizatsii v neironnykh setyakh fazovykh ostsillyatorov s tsentralnym elementom”, Issledovaniya po matematicheskoi biologii (sbornik nauchnykh trudov, posvyaschennyi pamyati A. D. Bazykina), eds. E. E. Shnol, ONTI NTsBI, Puschino, 1996, 124–150
[10] Kazanovich Y.B., Borisyuk R.M., “Dynamics of neural networks with a central element”, Neural Networks, 12 (1999), 149–161 | DOI
[11] Malsburg C. von der, The correlation theory of brain function, Internal report 81-2, Max-Plank Institute for Biophysical Chemistry, 1981; reprinted in E. Domany, J. L. van Hemmen, K. Schulten (eds.), Models of Neural Networks, Springer, New York, 1994, 95–119 | MR
[12] Abarbanel G. D. I., Rabinovich M. I., Selverston A., i dr., “Sinkhronizatsiya v neironnykh ansamblyakh”, Uspekhi fizicheskikh nauk, 166:4 (1996), 363–390
[13] Borisyuk G. N., Borisyuk R. M., Kazanovich Ya. B., Ivanitskii G. R., “Modelirovanie dinamiki neironnoi aktivnosti i obrabotka informatsii v mozge – itogi “desyatiletiya””, Uspekhi fizicheskikh nauk, 172:10 (2002), 1189–1214
[14] Hansel D., Mato G., Meunier C., “Phase dynamics for weakly coupled Hodgkin–Huxley neurons”, Europhys. Lett., 23 (1993), 367–372 | DOI
[15] White J. A., Chow C. C., Ritt J., et al., “Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons”, J. Comp. Neurosci., 5 (1998), 5–16 | DOI | Zbl
[16] Chik D., Coombes S., Wang Z. D., “Clustering through postinhibitory rebound in synaptically coupled neurons”, Physical Review E, 70 (2004), 011908 | DOI | MR
[17] Rossoni E., Chen Y., Ding M., Feng J., “Stability of synchronous oscillations in a system of two Hodgkin–Huxley neurons with delayed diffusive and pulsed coupling”, Physical Review E, 71 (2005), 061904 | DOI | MR
[18] Wang D.-L., Terman D., “Locally excitatory globally inhibitory oscillator network”, IEEE Trans. Neural Networks, 6 (1995), 283–286 | DOI
[19] Wang D.-L., Terman D., “Image segmentation based on oscillatory correlation”, Neural Computation, 9 (1997), 805–836 | DOI
[20] Wang D. L., “Object selection based on oscillatory correlation”, Neural Networks, 12 (1999), 579–592 | DOI
[21] Borisyuk R., Kazanovich Y., “Oscillatory model of attention-guided object selection and novelty detection”, Neural Networks, 17 (2004), 899–915 | DOI | Zbl
[22] Fitzpatrick J. S., Akopian G., Walsh J. P., “Short-term plasticity at inhibitory synapses in rat striatum and its effects on striatal output”, J. Neurophysiol., 85 (2001), 2088–2099
[23] Zucker R. S., Regehr W. G., “Short-term synaptic plasticity”, Ann. Rev. Physiol., 64 (2002), 355–405 | DOI
[24] Klein R., “Inhibitory tagging system facilitates visual search”, Nature, 334 (1988), 430–431 | DOI
[25] Takeda Y., Yagi A., “Inhibitory tagging in visual search can be found if search stimuli remain visible”, Perception and Psychophysics, 62 (2000), 927–934 | DOI
[26] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its applications to conduction and excitation in nerve”, J. Physiology, 117 (1952), 500–544
[27] Katayama K., Yano M., Horiguchi T., “Neural network model of selective visual attention using Hodgkin–Huxley equation”, Biol. Cybern., 91 (2004), 315–325 | DOI | Zbl
[28] Taylor K., Mandon S., Freiwald W., Kreiter A., “Coherent oscillatory activity in monkey area V4 predicts successful allocation of attention”, Cerebral Cortex, 15 (2005), 1424–1437 | DOI
[29] Vidal J. R., Chaumon M., O'Regant J. K., Tallon-Baudry C., “Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals”, J. Cogn. Neurosci., 18 (2006), 1850–1862 | DOI
[30] Allman L., Miezin F., McGuinness E., “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons”, Ann. Rev. Neurosci., 8 (1985), 407–430 | DOI
[31] Sillito A. M., Grieve K. L., Jones H. E., Cudeiro J., Davis J., “Visual cortical mechanisms detecting focal orientation discontinuities”, Nature, 378 (1995), 492–496 | DOI
[32] Morris J. S., Friston K. J., Dolan R. J., “Neural responses to salient visual stimuli”, Proc. Royal Soc., London B, 264 (1997), 769–775 | DOI
[33] Egeth H. E., Yantis S., “Visual attention: control, representation, and time course”, Ann. Rev. Psychol., 48 (1997), 269–297 | DOI
[34] Carlson T. A., Hogendoom H., Ferstraten F., “The speed of visual attention: What time is it?”, Journal of Vision, 6 (2006), 1406–1411
[35] Moran J., Desimone R., “Selective attention gates visual processing in the extrastriate cortex”, Science, 229 (1985), 782–784 | DOI
[36] McAdams C., Maunsell J., “Effects of attention on orientation-tuning functions of single neurons of macaque cortical area V4”, J. Neurosci., 19 (1999), 431–441
[37] Vanduffel W., Tootell R., Orban G., “Attention dependent suppression of metabolic activity in the early stages of the macaque visual system”, Cerebral Cortex, 10 (2000), 109–126 | DOI