Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2007_2_2_a2, author = {Yu. M. Aponin and E. A. Aponina}, title = {Hierarchy of models in mathematical biology and numerically-analytical methods of its investigation (review)}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {347--360}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a2/} }
TY - JOUR AU - Yu. M. Aponin AU - E. A. Aponina TI - Hierarchy of models in mathematical biology and numerically-analytical methods of its investigation (review) JO - Matematičeskaâ biologiâ i bioinformatika PY - 2007 SP - 347 EP - 360 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a2/ LA - ru ID - MBB_2007_2_2_a2 ER -
%0 Journal Article %A Yu. M. Aponin %A E. A. Aponina %T Hierarchy of models in mathematical biology and numerically-analytical methods of its investigation (review) %J Matematičeskaâ biologiâ i bioinformatika %D 2007 %P 347-360 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a2/ %G ru %F MBB_2007_2_2_a2
Yu. M. Aponin; E. A. Aponina. Hierarchy of models in mathematical biology and numerically-analytical methods of its investigation (review). Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 2, pp. 347-360. http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a2/
[1] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR | Zbl
[2] Teoriya sistem. Matematicheskie metody i modelirovanie, Sbornik statei, Mir, M., 1989, 384 pp. (Per. s angl.)
[3] Neimark Yu. I., Matematicheskie modeli estestvoznaniya i tekhniki, Tsikl lektsii. Vypusk 1, Izd-vo NNGU, N. Novgorod, 1994, 84 pp.
[4] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. | MR
[5] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984, 304 pp. | MR
[6] Chernavskii D. S., Starkov N. I., Scherbakov A. V., “Dinamicheskaya model povedeniya obschestva. Sinergeticheskii podkhod k makroekonomike”, Novoe v sinergetike. Vzglyad v trete tysyacheletie, Nauka, M., 2002, 239–291
[7] Riznichenko G. Yu., Matematicheskie modeli v biofizike i ekologii, IKI, M., Izh., 2003, 184 pp.
[8] Rubin A. B., Biofizika, v. 1, Teoreticheskaya biofizika, Izd-vo MGU, M.; Izd-vo Nauka, 2004, 462 pp.
[9] Chernavskii D. S., Chernavskaya N. M., Malkov S. Yu., Malkov A. S., “Geopoliticheskie protsessy kak ob'ekt matematicheskogo modelirovaniya”, Istoriya i sinergetika: Matematicheskoe modelirovanie sotsialnoi dinamiki, KomKniga, M., 2005, 103–116
[10] Malinetskii G. G., Matematicheskie osnovy sinergetiki. Khaos, struktury, vychislitelnyi eksperiment, KomKniga, M., 2005, 312 pp.
[11] Teoreticheskaya i matematicheskaya biologiya, Sb. statei, Mir, M., 1968, 448 pp. (Per. s angl.)
[12] Fomin S. V., Matematika v biologii, Znanie, M., 1969, 48 pp.
[13] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Chto takoe matematicheskaya biofizika (Kineticheskie modeli v biofizike), Prosveschenie, M., 1971, 136 pp.
[14] Fomin S. V., Berkinblit M. B., Matematicheskie problemy v biologii, Nauka, M., 1973, 200 pp. | Zbl
[15] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskoe modelirovanie v biofizike, Nauka, M., 1975, 344 pp. | MR
[16] Ivanitskii G. R., Krinskii V. I., Selkov E. E., Matematicheskaya biofizika kletki, Nauka, M., 1978, 308 pp.
[17] Ivanitskii G. R., Borba idei v biofizike, Znanie, M., 1982, 64 pp.
[18] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 182 pp. | MR | Zbl
[19] Loskutov A. Yu., Mikhailov A. S., Vvedenie v sinergetiku, Nauka, M., 1990, 272 pp.
[20] Riznichenko G. Yu., Rubin A. B., Matematicheskie modeli biologicheskikh produktsionnykh protsessov, MGU, M., 1993, 302 pp.
[21] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, IKI, M., Izh., 2003, 368 pp.
[22] Riznichenko G. Yu., Rubin A. B., Biofizicheskaya dinamika produktsionnykh protsessov, IKI, M., Izh., 2004, 464 pp.
[23] Chernavskii D. S., Sinergetika i informatsiya, Nauka, M., 2001, 244 pp. | MR
[24] Malinetskii G. G., Potapov A. B., Nelineinaya dinamika i khaos. Osnovnye ponyatiya, KomKniga, M., 2006, 240 pp.
[25] Malinetskii G. G., Potapov A. B., Podlazov A. V., Nelineinaya dinamika. Podkhody, rezultaty, nadezhdy, KomKniga, M., 2006, 280 pp.
[26] Grebenikov E. A., Ryabov Yu. A., Konstruktivnye metody analiza nelineinykh sistem, Nauka, M., 1979, 432 pp. | MR | Zbl
[27] Tsurkov V. I., Dinamicheskie zadachi bolshoi razmernosti, Nauka, M., 1988, 288 pp. | MR | Zbl
[28] Molchanov A. M., Nelineinosti v biologii, ONTI PNTs RAN, Puschino, 1992, 222 pp.
[29] Bom D., Obschaya teoriya kollektivnykh peremennykh, Mir, M., 1964, 152 pp.
[30] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR
[31] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. Shkola, M., 1990, 208 pp. | MR
[32] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975, 248 pp. | MR
[33] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995, 336 pp. | MR
[34] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 504 pp. | MR
[35] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988, 256 pp. | MR | Zbl
[36] Zhabotinskii A. M., Kontsentratsionnye avtokolebaniya, Nauka, M., 1974, 179 pp.
[37] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, IKI, M., Izh., 2002, 560 pp.
[38] Shoshitaishvili A. N., “Bifurkatsii topologicheskogo tipa vektornogo polya vblizi osoboi tochki”, Tr. seminarov im. I. G. Petrovskogo, 1975, 279–309 | Zbl
[39] Kapitsa S. P., Kurdyumov S. P., Malinetskii G. G., Sinergetika i prognozy buduschego, Editorial URSS, M., 2003, 288 pp.
[40] Romanov A. V., “Effektivnaya konechnaya parametrizatsiya v fazovykh prostranstvakh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 70:5 (2006), 163–178 | MR | Zbl
[41] Galitskii V. V., “O modelirovanii produktsionnogo protsessa v rastitelnom soobschestve”, Modelirovanie biogeotsenoticheskikh protsessov, Nauka, M., 1981, 104–118
[42] Galitskii V. V., Tyuryukanov A. N., “O metodologicheskikh predposylkakh modelirovaniya v biogeotsenologii”, Modelirovanie biogeotsenoticheskikh protsessov, Nauka, M., 1981, 29–47
[43] Moiseev N. N., Matematika stavit eksperiment, Nauka, M., 1979, 224 pp. | MR
[44] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976, 288 pp. | MR
[45] Andrianov I. V., Barantsev R. G., Manevich L. I., Asimptoticheskaya matematika i sinergetika: put k tselostnoi prostote, Editorial URSS, M., 2004, 304 pp.
[46] Uspenskii V. A., Chto takoe nestandartnyi analiz?, Nauka, M., 1987, 128 pp. | MR
[47] Albeverio S., Fenstad I., Kheeg-Kron R., Lindstrem T., Nestandartnye metody v stokhasticheskom analize i matematicheskoi fizike, Mir, M., 1990, 616 pp. | MR | Zbl
[48] Aponin Yu. M., Aponina E. A., “Nestandartnyi analiz kak yazyk matematicheskogo otobrazheniya i modelirovaniya realnosti”, VII Mezhdunarodnaya konf. serii “Nelineinyi mir”. Yazyki nauki – yazyki iskusstva, NITs Regul. i khaot. dinamika, Izhevsk, 2002, 10
[49] Khibnik A. I., Shnol E. E., Programmy dlya kachestvennogo issledovaniya differentsialnykh uravnenii. Informatsionnyi material, ONTI NTsBI AN SSSR, Puschino, 1982, 16 pp.
[50] Frisman E. Ya., Shapiro A. P., Izbrannye matematicheskie modeli divergentnoi evolyutsii populyatsii, Nauka, M., 1977, 151 pp. | MR | Zbl
[51] Skaletskaya E. I., Frisman E. Ya., Shapiro A. P., Diskretnye modeli dinamiki chislennosti populyatsii i optimizatsiya promysla, Nauka, M., 1979, 166 pp. | MR
[52] Shapiro A. P., Luppov S. P., Rekurrentnye uravneniya v teorii populyatsionnoi biologii, Nauka, M., 1983, 134 pp. | MR
[53] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, NITs “Regul. i khaot. dinamika”, M., Izh., 2004, 456 pp.
[54] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl
[55] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967, 488 pp. | MR
[56] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., Teoriya bifurkatsii, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI AN SSSR, M., 1985, 5–218 | MR
[57] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990, 488 pp. | MR | Zbl
[58] Serebryakova N. N., “Kachestvennoe issledovanie odnoi sistemy differentsialnykh uravnenii teorii kolebanii”, PMM, 27:1 (1963), 160–166 | Zbl
[59] Aponin Yu. M., Asimptoticheskie formuly dlya predelnogo tsikla pri rozhdenii iz petli separatrisy, VINITI, Puschino, 1976, 46 pp.
[60] Aponin Yu. M., Ob analiticheskoi kharakteristike izmeneniya separatrisy i predelnogo tsikla v zavisimosti ot parametra, VINITI, Puschino, 1978, 25 pp.
[61] Aponin Yu. M., O nekotorykh asimptoticheskikh otsenkakh i vychislitelnykh algoritmakh dlya issledovaniya predelnykh tsiklov i separatris sistem dvukh obyknovennykh differentsialnykh uravnenii, Avtoreferat kand. dissertatsii, Gorkii, 1979, 16 pp.
[62] Davidenko D. F., “O novom metode chislennogo resheniya sistem nelineinykh uravnenii”, DAN SSSR, 88:4 (1953), 601–602 | MR | Zbl
[63] Lobanov A. I., Petrov I. B., Starozhilova T. K., Vychislitelnye metody dlya analiza modelei slozhnykh dinamicheskikh sistem, Ch. II: Uchebnoe posobie, FIZTEKh-POLIGRAF, Dolgoprudnyi, 2002, 155 pp.
[64] Aponin Yu. M., Aponina E. A., Izbrannye algoritmy i programmy dlya EVM MIR-2. Separatrisy sistemy dvukh differentsialnykh uravnenii, ONTI NTsBI AN SSSR, Puschino, 1976, 36 pp.
[65] Kuznetsov Yu. A., Odnomernye separatrisy sistemy obyknovennykh differentsialnykh uravnenii, zavisyaschei ot parametrov. Materialy po matematicheskomu obespecheniyu EVM, ONTI NTsBI AN SSSR, Puschino, 1983, 48 pp.
[66] Aponina E. A., Aponin Yu. M., Kreitser G. P., Shnol E. E., Izbrannye algoritmy i programmy dlya EVM MIR-2. Predelnye tsikly sistemy dvukh differentsialnykh uravnenii, ONTI NTsBI AN SSSR, Puschino, 1974, 46 pp.
[67] Balabaev N. K., Lunevskaya L. V., Dvizhenie po krivoi v $n$-mernom prostranstve. Materialy po matematicheskomu obespecheniyu EVM, ONTI NTsBI AN SSSR, Puschino, 1978, 52 pp.
[68] Neimark Yu. I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii, Nauka, M., 1972, 472 pp. | MR
[69] Butenin N. V., Neimark Yu. I., Fufaev N. A., Vvedenie v teoriyu nelineinykh kolebanii, Nauka, M., 1976, 384 pp. | MR
[70] Neimark Yu. I., Landa P. S., Stokhasticheskie i khaoticheskie kolebaniya, Nauka, M., 1987, 424 pp. | MR
[71] Ilyashenko Yu. S., Li Veigu, Nelokalnye bifurkatsii, MTs NMO, CheRo, M., 1999, 416 pp. | MR
[72] Berezovskaya F. S., Kreitser G. P., Izbrannye algoritmy i programmy dlya EVM MIR-2. Slozhnye osobye tochki sistemy dvukh differentsialnykh uravnenii, ONTI NTsBI AN SSSR, Puschino, 1975, 56 pp.
[73] Kreitser G. P., Izbrannye algoritmy i programmy dlya EVM MIR-2. Prostye osobye tochki sistemy dvukh differentsialnykh uravnenii, ONTI NTsBI AN SSSR, Puschino, 1976, 48 pp.
[74] Zarkhin Yu. G., Kovalenko V. N., Nakhozhdenie reshenii sistemy dvukh algebraicheskikh uravnenii. Materialy po matematicheskomu obespecheniyu EVM, ONTI NTsBI AN SSSR, Puschino, 1978, 44 pp.
[75] Khibnik A. I., Periodicheskie resheniya sistemy n differentsialnykh uravnenii. Algoritmy i programmy na FORTRANE, ONTI NTsBI AN SSSR, Puschino, 1979, 72 pp.
[76] Borisyuk R. M., Statsionarnye resheniya sistemy obyknovennykh differentsialnykh uravnenii, zavisyaschei ot parametra. Materialy po matematicheskomu obespecheniyu EVM, ONTI NTsBI AN SSSR, Puschino, 1981, 68 pp.
[77] Aponin Yu. M., Antonenko Yu. N., Aponina E. A., Kovbasnyuk O. N., Yaguzhinskii L. S., “Neelektrogennyi $K^+/H^+$ – obmen, vklyuchayuschii stadiyu obmena protonami mezhdu perenoschikom i kislotno-osnovnymi gruppirovkami fosfolipidov na poverkhnosti membrany. Sravnenie teorii i eksperimenta”, Biologicheskie membrany, 13:3 (1996), 258–270
[78] Balabaev N. K., “Metodika modelirovaniya dinamiki polimerov”, Metod molekulyarnoi dinamiki v fizicheskoi khimii, Nauka, M., 1996, 257–278 pp.
[79] Lakhno V. D., “Dinamika perenosa dyrki v nukleotidnykh posledovatelnostyakh”, Kompyutery i superkompyutery v biologii, Institut kompyuternykh issledovanii, M., Izhevsk, 2002, 137–171
[80] Lakhno V. D., “Modelirovanie pervichnykh protsessov perenosa zaryada v reaktsionnom tsentre fotosinteza”, Kompyutery i superkompyutery v biologii, Institut kompyuternykh issledovanii, M., Izhevsk, 2002, 195–208
[81] Eigen M., Samoorganizatsiya materii i evolyutsiya biologicheskikh makromolekul, Mir, M., 1973, 216 pp.
[82] Eigen M., Shuster P., Gipertsikl. Printsipy samoorganizatsii makromolekul, Mir, M., 1982, 272 pp.
[83] Redko V. G., Evolyutsionnaya kibernetika, Nauka, M., 2001, 156 pp.
[84] Gudvin B., Vremennaya organizatsiya kletki, Mir, M., 1966, 251 pp.
[85] Elkin Yu. E., Gennye seti, http://www.mathcell.ru/ru/obzors/obzor Elkin.shtml
[86] Pechurkin N. S., Populyatsionnaya mikrobiologiya, Nauka, Novosibirsk, 1978, 278 pp.
[87] Svirezhev Yu. M., Pasekov V. P., Osnovy matematicheskoi genetiki, Nauka, M., 1982, 512 pp. | MR
[88] Stanishkis Yu.-K. Yu., Optimalnoe upravlenie biotekhnologicheskimi protsessami, Mokslas, Vilnyus, 1984, 256 pp.
[89] Varfolomeev S. D., Kalyuzhnyi S. V., Biotekhnologiya: Kineticheskie osnovy mikrobiologicheskikh protsessov, Vyssh. shk., M., 1990, 296 pp.
[90] Pechurkin N. S., Brilkov A. V., Marchenkova T. V., Populyatsionnye aspekty biotekhnologii, Nauka, Novosibirsk, 1990, 173 pp.
[91] Balanter B. I., Khanin M. A., Chernavskii D. S., Vvedenie v matematicheskoe modelirovanie patologicheskikh protsessov, Meditsina, M., 1980, 264 pp.
[92] Smirnova O. A., Radiatsiya i organizm mlekopitayuschikh: modelnyi podkhod, NITs “Regulyarnaya i khaoticheskaya dinamika”, M., Izhevsk, 2006, 224 pp.
[93] Ivanov V. K., Matematicheskoe modelirovanie i optimizatsiya luchevoi terapii opukholei, Energoatomizdat, M., 1986, 144 pp. | MR
[94] Bellman R., Matematicheskie metody v meditsine, Mir, M., 1987, 200 pp. | MR | Zbl
[95] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. | MR
[96] Korotaev A. V., Malkov A. S., Khalturina D. A., Zakony istorii: Matematicheskoe modelirovanie razvitiya Mir – Sistemy. Demografiya, ekonomika, kultura, KomKniga, M., 2007, 224 pp.
[97] Borodkin L. I., “Nelineinaya dinamika sotsialno-politicheskikh protsessov proshlogo: metodologicheskie problemy modelirovaniya neustoichivogo razvitiya”, Istoriya i Matematika: Analiz i modelirovanie sotsialno-istoricheskikh protsessov, KomKniga, M., 2007, 8–48
[98] Bykov V. I., Modelirovanie kriticheskikh yavlenii v khimicheskoi kinetike, KomKniga, M., 2006, 328 pp.
[99] Aponin Yu. M., Vanyakin E. N., Osipov V. V., “Matematicheskoe modelirovanie protsessov periodicheskogo kultivirovaniya mikroorganizmov s uchetom dinamiki rastvorennykh gazov”, Matematika i modelirovanie, Sbornik nauchnykh trudov, ONTI NTsBI AN SSSR, Puschino, 1990, 222–232
[100] Aponin Yu. M., Populyatsionnaya dinamika bakterialnykh plazmid v usloviyakh khemostatnogo kultivirovaniya, ONTI NTsBI AN SSSR, Puschino, 1982, 18 pp.
[101] Aponin Yu. M., Aponina E. A., Velkov V. V., Matematicheskoe modelirovanie protsessov nepreryvnogo kultivirovaniya mikroorganizmov, soderzhaschikh nestabilnye gibridnye plazmidy, ONTI NTsBI AN SSSR, Puschino, 1984, 21 pp.
[102] Aponin Yu. M., Aponina E. A., Vanyakin E. N., Matematicheskoe modelirovanie protsessov nepreryvnogo kultivirovaniya s uchetom geterogennosti mikrobnykh populyatsii, ONTI NTsBI AN SSSR, Puschino, 1989, 32 pp.