An effective $p$-adic analogue of a theorem of Thue. III.~The diophantine equation $y^2=x^3+k$
Matematika, Tome 17 (1973) no. 5, pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MAT_1973_17_5_a1,
     author = {J. Coates},
     title = {An effective $p$-adic analogue of a theorem of {Thue.} {III.~The} diophantine equation $y^2=x^3+k$},
     journal = {Matematika},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAT_1973_17_5_a1/}
}
TY  - JOUR
AU  - J. Coates
TI  - An effective $p$-adic analogue of a theorem of Thue. III.~The diophantine equation $y^2=x^3+k$
JO  - Matematika
PY  - 1973
SP  - 57
EP  - 66
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAT_1973_17_5_a1/
LA  - ru
ID  - MAT_1973_17_5_a1
ER  - 
%0 Journal Article
%A J. Coates
%T An effective $p$-adic analogue of a theorem of Thue. III.~The diophantine equation $y^2=x^3+k$
%J Matematika
%D 1973
%P 57-66
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAT_1973_17_5_a1/
%G ru
%F MAT_1973_17_5_a1
J. Coates. An effective $p$-adic analogue of a theorem of Thue. III.~The diophantine equation $y^2=x^3+k$. Matematika, Tome 17 (1973) no. 5, pp. 57-66. http://geodesic.mathdoc.fr/item/MAT_1973_17_5_a1/